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Abstract. This paper address the detection of dust storms based on a prob-
abilistic analysis of multispectral images. We develop a feature set based
on the analysis of spectral bands reported in the literature. These studies
have focused on the visual identification of the image channels that reflect
the presence of dust storms through correlation with meteorological reports.
Using this feature set we develop a Maximum Likelihood classifier and a
Probabilistic Neural Network (PNN) to automate the dust storm detection
process. The data sets are MODIS multispectral bands from NASA Terra
satellite. Findings indicate that the PNN provides improved classification
performance with reference to the ML classifier. Furthermore, the proposed
schemes allow real-time processing of satellite data at 1 km resolutions which
is an improvement compared to the 10 km resolution currently provided by
other detection methods.

1 Introduction

Dust aerosols are a major cause of health, environmental, and economical haz-
ards, and can adversely impact urban areas [1]. From a scientific perspective,
understanding dust storm genesis, formation, propagation and composition
is important to reduce their impact or predict their effect (e.g., increase of
asthma cases). Multispectral instruments allow space imaging of atmospheric
and earth materials based on their spectral signature. More specifically, they
allow the detection of dust air-borne particles (aerosols) propagated through
the atmosphere in the form of dust storms.

Current methods for dust aerosol are based on the Moderate Resolution
Spectroradiometer (MODIS) Aerosol Optical Thickness (AOT) product [2, 3]
which is provided by the NASA Terra satellite.
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The AOT product allows tracking of pollutant aerosols by observing the
aerosol optical thickness. However, AOT products require a considerable
amount of processing time (i.e., two days after satellite pass) before useful
information on aerosol events is extracted. The use of simple band arithmetic
(e.g., subtraction) has been reported as a scheme to visualize the presence
of dust storms [1]. This method is highly subjective making interpretation
dependent on the experience of the analyst.

Given the large amount of data produced by MODIS, it is also desirable
to have automated systems that assists scientist on finding or classifying
different earth phenomena with minimal human intervention. For example,
Aksoy, et al. [4], developed a visual grammar scheme that integrates low-
level features to provide a high level spatial scene description on land cover
and land usage. Similar automated schemes for dust detection are highly
desirable.

In this paper we present two methods for the detection of dust storms from
multispectral imagery using statistical pattern classifiers. Based on reported
data, we present a feature set that allows accurate and real-time detection
of dust aerosol. The proposed feature set is extracted from MODIS spectral
bands and evaluated with a maximum likelihood (ML) classifier and a proba-
bilistic neural network (PNN). We will show that the PNN approach provides
a better detection and representation of dust storm events.

This paper is organized as follows. Section 2 of the paper introduces the
dust aerosol multispectral analysis. The ML and PNN models are explained
in Section 3 and 4. Section 5 presents experimental results leading to differ-
ent levels of segmentation between dust storms and other materials. Finally,
conclusions are drawn in Section 6.

2 An Overview of MODIS Data

Remote sensing is the research area that studies how to gather and analyze in-
formation about the Earth from a distance. Uses include the mapping of fires,
weather monitoring, cloud evolution, and land cover analysis. The informa-
tion gathered can be used to produce images of erupting volcanoes, monitor
for dust storms, view the sequential growth of a city, and track deforestation
over time [6, 18].

In this paper we collected thermal information about the land, strato-
sphere, and atmosphere using special instruments aboard a satellite orbiting
the Earth surface. This instrument is called “Moderate-Resolution Imaging
Spectroradiometer” (MODIS). These remotely sensed data is collected as dig-
ital files, containing data captured at different spectral waves in the optical
range (i.e. multispectral data). These digital files are known as “granules”
and can be downloaded from the web at the NASA WIST tool.

The MODIS instrument is built in NASA Terra and Aqua satellites.
MODIS multispectral data is currently used in the analysis of different
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phenomena like sea temperature and surface reflectivity. MODIS provides
information in 36 spectral bands between wavelengths 405nm and 14.385pm.

MODIS multispectral data is available in different levels. These levels de-
pend on the level of data processing. Level 0 is raw telemetry data (i.e. satel-
lite unorganized data). Level 1A is raw data organized by spectral bands.
Level 1B consists of corrected multispectral data (i.e. bad sensor information
is pointed out). Subsequent levels are processed for particular analysis that
include aerosol, water vapor, and cloud. In this paper we use the multispectral
bands available in MODIS Level 1B.

3 Selection and Analysis of Spectral Bands for Feature
Extraction

In this section we described the proposed feature extraction process based
on the analysis of spectral bands reported in the literature. These studies
have focused on the visual identification of the image channels that reflect
the presence of dust storms through correlation with meteorological reports.
Visual assessment of dust storms can be achieved using MODIS bands B1,
B3, and B4 which are within human visual range [5]. An RGB-like composite
image can be produced by the mapping red to B1, green to B4, and blue to
B3. Hao et al.[6] demonstrated that bands B20,829,831 and B32 can also
be utilized for dust aerosol visualization. Ackerman et al.[7] demonstrated
that band subtraction B32 — B31 improves dust storm visualization contrast.
Based on these findings, we will form feature vectors using pixels values from
the recovered bands B20, B29, B31, and B32.

A 7recovered” radiance is a 16 bit MODIS band mapped to its original
units (W/m?2/um/sr). The recovery process is given by

L=kr(t—n), (1)

where L denotes the recovered radiance, x is the radiance scale, 7 denotes
the radiance offset, and ¢ is the scaled intensity (raw data). For each pixel
location (n,m), a feature vector F' € R* is formed by
J o [LBQO [,B29 [ B31 LBS2]T
nm — nm

nm nm ? nm

(2)

corresponding to the recovered radiances of the dust sensitive wavelengths.

4 Dust Storm Detection Using the Maximum
Likelihood Classifier

The Maximum Likelihood Classifier (ML) has been extensively studied in
remotely sensed data classification and analysis [9, 4]. Here we present a
straightforward adaptation of the ML classifier to dust storm detection
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using the feature set described in the previous section. Let fxi(z) =
(X = z|C = k) be the conditional probability density function of feature vec-
tor X having a value z, given the probability that the k-th class occurs. This
might be referred as the “data likelihood” function. Assuming normally dis-
tributed features (i.e., pixel values), we can define a discriminant function

Ur(x) = — det () — (v — )" 5" (@ — puw) (3)

for each class k, where 3, the covariance matrix, yg denotes the mean feature
vector, and det (-) is the determinant function. Then, the decision rule can
be simply stated as

reC=j if U@)>wile) Vii (4)

The parameters 3 and py were obtained from the training data described in
the previous section using the maximum likelihood estimators (e.g., sample
mean and sample covariance matrix).

5 Neuro-Probabilistic Modeling: The Probabilistic
Neural Network

Specht’s Probabilistic Neural Network (PNN) is a semi-supervised neural
network [10]. It is widely used in pattern recognition applications [11]. The
PNN is inspired in Bayesian classification and does not require training. It
estimate the PDF of each feature assuming they are normally distributed.
The PNN has a four-layered architecture as shown in Figure 1. The first
layer is an input layer receiving the feature vectors F),,. The second layer
consists of a set of neurons which are fully connected to the input nodes. The
output of this layer is given by

i F) = e ) ®)

where 7 is an index labeling each design vector and k is its the corresponding
class. The pattern units Vﬁc correspond to the mean feature vector for each
class. The parameter o is estimated with the method developed by Srinivasan
et al. [12].

The third layer contains summation units to complete the probability esti-
mation. There are as many summation units as classes. The j —th summation
unit denoted as £2;(-), receives input only from those pattern units belonging
to the j — th class. This layer computes the likelihood of F' being classified as
C, averaging and summarizing the output of neurons belonging to the same
class. This can be expressed as
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The last layer classifies feature input vector F,,, according to the Bayesian
decision rule given by

F e if,
C; (825 (ps (F))) = arg max i (i (F)). (7)
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Fig. 1. The hybrid architecture of the Probabilistic Neural Network. Note the
probabilistic nature embedded in a neural architecture.
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5.1 The PNN Large Sample Size Problem

To avoid the overwhelming processing of millions training samples, we lim-
ited the training samples number. We based our reduction method on Kanel-
lopoulos criteria [13] which establishes that the number of training samples
must be at least three times the number of feature bands. Therefore, in our
PNN design we used six times the feature vector size (e.g., four) requiring 24
training samples per class. In order to select the testing vectors (24 per class),
principal component analysis (PCA) was applied to a training set consisting
of millions of feature vectors. Then the test feature vectors associated to the
24 largest eigenvalues were selected as the PNN training set.

6 Results and Discussion

In our experiments we selected 31 different events corresponding to the south-
western US, and north-western Mexico area. The 31 events are known dust
storm cases reported in [8]. From these events, 23 were selected to train and
test the classifiers. Each event contains multispectral images of size 2030 x
1053 pixels. We manually segmented the images using the MODIS visual
range into four classes C' = {dust storm, blowing dust, smoke, background}.
The selection of modeling (training) and testing feature vectors was per-
formed by PCA as explained in the last section. The complete data set pro-
vides approximately 75 million feature vectors from which 97.5% correspond
to the background class. The feature vectors are sliced into 0.005% for train-
ing and the remaining are for testing.

In order to evaluate the performance of the classifiers, we need to select a
figure of merit. Typically accuracy, received operating characteristic (ROC)
or area under the ROC curve (AUC) have been used individually. However,
as reported in [16] these measures can only be used interchangeably when the
positive and negative test sets are large and balanced. Hence, it is now rec-
ognized that using more than one figure of merit is necessary to have a good
assessment of a classifier. We evaluate our results using accuracy defined as

TP+TN g
TP+ FN+FP+TN’ ®
where T P is the number of true positives, F'P is the number of false positives,
TN is the number of false negatives and F'N is the number of false negatives.
Hence accuracy corresponds to the correct classification rate over all classes.
A related measure is precision or positive predictive value (PPV) given by

Accuracy =

TP
Precision = —————. 9
TP+ FP )
In this case, precision represents the fraction of true positives from all the
vectors classified as a positive. Finally we use AUC which is has been rec-
ognized in the machine learning community to provide a better metric than
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Table 1. Classifiers Performance.

Precision|Std. Dev.||Accuracy|Std. Dev.|| AUC |Std. Dev.||P. Time|Std. Dev.
ML || 0.5255 | 0.2610 0.6779 | 0.1282 ||0.4884| 0.0036 || 0.1484 | 0.0021
PNN| 0.7664 | 0.1616 0.8412 | 0.1612 ||0.6293| 0.0654 || 2.5198 | 0.0018

accuracy [14]. In summary, higher precision and accuracy reflect that a sys-
tem produces more true positives results while reducing the number of false
negatives. Similarly, a higher AUC reflects how a classifier is able to correctly
classify feature vectors and at the same time minimize the misclassification
errors.

Since in our case we have four classes, generalizing precision and accuracy
is obtained by considering a 4 x 4 confusion matrix where the main diagonal
entries represent the true positives for each class. We can drop the idea of
a negative set and use T P; to identify the true positives for class class i.
The idea of false negatives is now represented by the off-diagonal elements
of the confusion matrix. For instance, the false negatives for class dust storm
consists of those vectors misclassified as blowing dust, smoke or background.
Similarly, false positives consists of all those vectors classified as dust storm
that belong to any of the other three classes. Based on these considerations,
expressions for precision and accuracy are straightforward to derive. The case
of multi-class ROCs and therefore AUCs is an open problem. Some multi-class
AUCs are described in [17]. In this paper we resorted to a simpler method
where we create a binary classifier by grouping both types of dust as a single
(i.e., positive) class, and lumping smoke and background as the negative.

We present metric results on Table 1. These results were obtained from
the whole set of 26 events by averaging each event results. Overall the PNN
approach provides better classification than ML. In particular, the AUC in-
dicates that the ML classifier should not be used in the dust storm detection
problem. On the other hand, the other metrics show a modest level of per-
formance. Hence, using multiple metrics provides a better understanding on
the capabilities of each classifier.

Beyond classifier performance, it is important to integrate the results of
the classification with actual images. Ultimately, the output of the classifiers
should be used as a tool to help scientists develop insights about dust storms.
We present two typical dust storm events in Figure 2. These color images were
obtained by mapping three MODIS bands to red, blue and green respectively.
The classification results can be visualized as the segmentations shown in
Figure 3 for the ML and PNN classifiers. Pixels classified as dust storm are
labeled red, blowing dust to green, smoke to blue, and background to black.
Both classifiers detect the presence of the storms, albeit the PNN detects
larger regions. This can be directly explained by the higher PNN metric values
on Table 1. From a detection perspective, both classifiers are successful. The
ML classifier would be attractive as a detector given its lower computational
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Fig. 2. Left, dust storm event on April 6th 2001. True color image R=B1, G=B4,
and B=B3. Right, dust storm event on December 15, 2003. True color image R=B1,
G=B4, and B=B3.

Fig. 3. Dust storm event on April 6th 2001. Left, segmentation using ML. Right
segmentation using PNN.

requirements. However, if a better understanding on the spatial distribution
of the storm is needed, then the PNN should be the selected classifier.
Processing time is an important measure when modeling real-time pro-
cessing systems. In the case of the MODIS instrument, image swaths of
10 x 1053 x 36 pixels known as “scans” are produced every 2.96 seconds
(i.e. 20.3 scans per minute). Thus, a real-time system must perform a clas-
sification in less than or equal to this time. The fourth column on Table 1
shows the processing time per scan in seconds. The time shown is computed
by taking the time average over all scans for all he events. The times were
measured with a MATLAB implementation running on a 2 GHz PC. The
time was measured using the tic(), toc() functions that give the true CPU
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Fig. 4. Dust storm event on April 6th 2001. Left, dust likelihood probability ML.
Right, dust likelihood probability PNN.

Fig. 5. Dust storm event on December 15, 2003. Left, dust likelihood probability
ML. Right, dust likelihood probability PNN.

processing time. The ML approach takes less than one second to classify the
complete scan, and the PNN approach takes about 2.5 seconds to produce the
classification result. In conclusion, both can be considered suitable for real
time detections at 1km resolution. In contrast, the MODIS AOT product
takes two days to be produced and released at a 10km resolution [15].
Finally, as a byproduct of the classification stage, it becomes possible to
extract more information about a dust storm by visualizing the dust likeli-
hood over the whole image. Both classifiers produce a parametrization of the
likelihood probability density function of dust f(x|dust storm) under a mul-
tivariate Gaussian assumption. Namely, a new image is formed by assigning
a value of f(x|dust storm) for each feature vector F,,. This visualization
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over an image provides unique information about the spatial distribution of
dust at the moment the image was acquired. This can be utilized to track
dust aerosols with a particular degree of confidence. The degree of confidence
is proportional to the probability of a pixel being classified as dust storm.
With this kind of visualization we can show only those pixels classified as
dust storm with a high degree of confidence (e.g. above 90% of confidence),
that resemble a conservative detection with a high degree of exigence. On the
other hand, we can use a low confidence interval (e.g. above 5% of confidence)
to study how the dust storm spreads across land. This analysis is known as
“dust transport,” and is relevant on establishing the origin and extensions of
a dust storm. Since the dust aerosol concentration is reduced as the storm
advances, dust transport can be studied by analyzing the pixels classified as
dust storm but with lower probability.

The dust likelihood visualization of the April 6th, 2001 event is shown
in Figure 4 One particularly interesting case is shown in Figure 5, where
the visual composite of the satellite image (Figure 2) shows one dust cloud;
however, when we observe the dust likelihood visualization we can notice that
there where two different dust storm outbreaks at different sources. This
information is difficult to see using only the visual composite of MODIS,
neither is possible using the AOT product because of the lack of spatial
resolution.

7 Conclusion

The dust aerosol detection problem has been addressed in this paper. We have
modeled probabilistic approaches for dust storm detection and classification.
These models are specialized on measuring the dust aerosol probability given
MODIS Level 1B data. Machine learning techniques were utilized to model a
dust aerosol detection neural architecture. To the best of the authors knowl-
edge, the presented work is first in its kind. We compared the Maximum
Likelihood classification (ML) model, and the Probabilistic Neural Network
(PNN). The PNN showed a strong ability classifying dust, and discriminating
other classes, such as clouds, smoke, and background. Moreover, the proposed
probabilistic models are suitable for near real-time applications, such as di-
rect broadcast, rapid response analysis, emergency alerts, etc. The reported
work has relevancy in dust aerosol analysis, since the algorithms can show
the dust presence to a resolution of lkm. This represents an improvement
over Aerosol Optical Thickness index (AOT) methods which lack resolution
and have a two day generation delay.
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