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Abstract. Dust storms are a natural severe weather condition. A recent
study in 2009 found correlation between lung diseases and dust storm
events. Since then, more research has been done for dust air-borne sus-
pended particle (aerosol) analysis. However, there is paucity of formal
methods in machine learning. Particularly, we study a classic and hybrid
neural probabilistic approach to alleviate the lack of specialized classi-
fication methods. The Maximum Likelihood Estimator (MLE) and the
hybrid Probabilistic Neural Network (PNN) approaches are discussed.
The features utilized are Moderate Resolution Imaging Spectroradiome-
ter (MODIS) thermal emissive spectral bands. We utilized four near
infrared bands: B20 (3.660 − 3.840µm), B29 (8.400 − 8.700µm), B31
(10.780 − 11.280µm), and B32 (11.770 − 12.270µm). Numerical per-
formance evaluation show that the hybrid approach (PNN) performed
better than the classic (MLE). Visually, both accurately detect dust
storms. The classifiers demonstrated a strong ability to find non-trivial
relationships within the spectral bands. Both methods demonstrated to
be soil-independent and surface-invariant detection methods. The pro-
posed methods can be effectively utilized in understanding dust storm
phenomena.

1 Introduction

During the past 20 years, society has been experiencing an increase in severe
weather conditions: strong winds, storms, hurricanes, etc. These conditions
force human beings to adapt their way of life. Research has been done to under-
stand human adaptation implications. In desert regions, dust storms occur as
a natural part of a climate system. In other regions, dust storms are a rapidly
increasing phenomenon, suggesting a modification to known climate models. Re-
cent findings in dust storm analysis show a correlation between lung diseases and



dust storms [1]. Ackerman demonstrated the feasibility of dust storm analysis
using satellite data [4]. Later, geophysicists [2] and geoscientists [3] introduced
formal methodologies for dust storm visualization and enhancement. Indeed,
NASA Terra and Aqua satellite data can be processed producing the Aerosol Op-
tical Density (AOD) product utilized for air-borne suspended particle (aerosol)
identification. Although much work has been done to date, most of the work
is limited in spatial resolution. Moreover, there is paucity of formal machine
learning detection methods. The need for computational intelligence special-
ized approaches is evident. The purpose of this work is to increase specialized
machine learning methods, and to provide high resolution models. We modeled
and compared classic and hybrid neural-based probabilistic detection methods:
the Maximum Likelihood Estimation (MLE) [5] and the Probabilistic Neural
Network [10]. The output of both provide a 1 km spatial resolution detection.
It is hoped that the information presented here may be useful in identifying op-
portunity areas to those who are responsible for rapid response teams or aerosol
identification research. Section 2 of the paper introduces the analysis for mul-
tispectral band selection. The MLE and PNN models are explained in Section
3 and 4, respectively. Section 5 presents experimental results followed by brief
results and findings discussion. Finally, conclusions are drawn in Section 6.

2 Spectral Bands Selection

The MODIS instrument is built in NASA’s Terra and Aqua satellites. MODIS
provides the Earth’s information in 36 spectral bands. It eases the analysis of
different phenomena such as atmospheric and sea temperature, surface reflec-
tivity, etc. All these data make possible the analysis of dust storms. These 36
bands are available in MODIS Level 1B file organization. Dust storm visual
assessment can be achieved using MODIS bands B1, B3, and B4 which corre-
spond to human visual perception. An RGB composite true color image can be
produced by mapping: R = B1, G = B4, and B = B3. Figure 1 shows an RGB
composite true color image of a dust storm off West Africa. Besides bands B1,
B3 and B4, Hao et al.[3] demonstrated that bands B20, B29, B31, and B32 can
also be utilized for dust storm visualization. Ackerman et al.[4] demonstrated
that the usage of bands B32 and B31 improve dust storm visualization contrast.
Based on these findings, we designed a classification scheme using the following
thermal emissive bands: B20 (3.660 − 3.840µm), B29 (8.400 − 8.700µm), B31
(10.780− 11.280µm), and B32 (11.770− 12.270µm).

2.1 Radiance Recovery and Feature Vector

A ”recovered” radiance is a 16 bit MODIS thermal emissive band recovered to
its original scale (W/m2/µm/sr). The recovery process is given by

L = κ(ι− η), (1)



Fig. 1. True color RGB composite of dust storm off West Africa. Date 09/21/2009.
Time 14:50 UTC. Satellite: Aqua. Courtesy of NASA MODIS Rapid Response Team.

where L denotes the recovered radiances, κ are the radiance scales, η are the
radiance offsets, and ι are the scaled intensities (raw data). Our feature vector
Fj ∈ ℜn×4 consists of the following recovered radiances

F =
[
LB20, LB29, LB31, LB32

]
, (2)

where Fj is a set of features associated to the j-th class, and the superscript of
L refers to the spectral band.



2.2 Data Set Collection

In our experiments, we selected 31 different events corresponding to the south-
western US and north-western Mexico area [9]. Only 8 were used for validation.
The data samples were downloaded using NASA’s WIST online tool. The se-
lection of modeling (training) and validation set was performed randomly. The
complete data set provides approximately 75 million feature vectors.

3 Probabilistic Modeling

Let X be a random associated to F in (2). Let fC(C = j) be the probability
mass function (PMF) associated to the j-th class. Let fX|C (X = x|C = j) be
the conditional probability density function of the spectral band feature vec-
tor X having a value x, given the probability that the j-th class occur. This
might be referred as the “data likelihood” function. The Maximum Likelihood
Classifier (Maximum Likelihood Estimator, MLE) assumes unknown posterior
probabilities . The MLE can be derived from Bayes theorem. It is an accepted
method in remotely sensed data classification and analysis [5]. Therefore, we
modeled the MLE classifier for the dust storm classification. Our models con-
sider four classes: C0 = land/sea background, SM = smoke, BLDU = blowing
dust, and DS = dust storm. The DS class is of primary interest. From now on,
PMF’s will be expressed as probability density functions (PDF’s). To obtain
the maximum likelihood between the observed data and the prior probability for
all classes, we can state the following decision rule:

x ∈ C = j if, . . .

fX|C(X|C = j)fC(C = j) > . . .

fX|C(X|C = i)fC(C = i), (3)

for all j ̸= i, and appearing already simplified by removing the common factor
fX(X = x). Then, assuming that the prior probability is normally distributed,
we can rewrite the above terms by defining a function

ψk(x) = fX|C(X = x|C = k)fC(C = k), (4)

that allows restating the decision rule as

x ∈ C = j if ψj(x) > ψi(x) ∀j ̸= i, (5)

which is more convenient to handle. In MLE, the functions ψk(x) are commonly
referred to as discriminant functions. The function fC(C = k) is removed from
(4) due to the high uncertainty about the true fC(C = k) PMF. Then, assuming
that the discriminant functions follow a Gaussian distribution, ψk(x) can be
reduced removing the factor −d

2 ln (2π), which adds no discriminant information
to classification [6]. Also the common factor, 1

2 , can be removed. This leads to
a commonly used simpler discriminant function:

ψk(x) = −det
(
ΣX|C

)
− . . .

(
x− µX|C

)T
Σ−1

X|C

(
x− µX|C

)
(6)



where det (·) is the determinant function, ΣX|C the likelihood PDF’s covariance

matrix, µX|C denotes the mean vector, (·)T denotes the transpose operation,

and Σ−1
X|C the inverse covariance matrix.

3.1 Conditional PDF fX|C Parameter Estimation

Considering Gaussianity, the goal is to estimate the following parameters: the
expected values vector µ̂F |C and the covariance matrix Σ̂F |C . We segmented
the images based on already published remote sensing papers. The segmentation
groups are dust storm, blowing dust, smoke, and background. These groups are
associated with a particular class C. Then, we extracted and stored the subset
of pixels associated to each class. Finally, we computed the sample mean µ̂F |C

and the covariance matrix Σ̂F |C . The covariance matrix Σ̂F |C is not ill-posed
since we have many data samples available.

4 Hybrid Neuro-Probabilistic Modeling

Specht’s Probabilistic Neural Network (PNN) is a semi-supervised neural net-
work [10]. It is widely used in pattern recognition applications. The PNN is
inspired by Bayesian classification and does not require training. It estimates
feature vector PDF’s assuming Gaussian distributions. The PNN has a four-
layered architecture, as shown in Figure 2.

The first layer is an input layer receiving the features F ∈ ℜn. The second
layer contains exponential functions ϕ (·) in each node, and the node’s count
corresponds to the k samples count for the j-th class. These nodes are called
pattern units νF

jk and are fully connected to the input nodes. The pattern layer’s
output is denoted by

ϕjk (F ) =
1

(2π)
d
2 σd

e−
1

2σ2 (F−νF
jk)

T (F−νF
jk). (7)

The third layer contains summation units to complete the probability esti-
mation. There are as many summation units as classes. The j−th summation
unit denoted as ϖj , receives input only from those pattern units belonging to
the j−th class. This layer computes the likelihood of F being classified as C,
averaging and summarizing neurons output belonging to the same class:

Ωj (ϕjk (F )) =
1

(2π)
d
2 σd

1

Nj
× . . .

Nj∑

i=1

e−
1

2σ2
(ϕik(F )−ϖi)

T (ϕik(F )−ϖi). (8)

The last layer is the decision layer. It classifies F ’s pattern according to the
Bayesian decision rule given by

F ∈ Cj if, Cj (Ωj (ϕjk (F ))) = max
1≤i≤j

Ωi (ϕik (F )) . (9)



Fig. 2. The hybrid architecture of the Probabilistic Neural Network. Note the proba-
bilistic nature embedded in a neural architecture.

Thus, the maximum of the summation nodes output characterize the PNN’s
general output. The function Ωj(·) gives the probability of the j-th class. This
allows us to generate probabilistic visualizations of our interest class: DS.

4.1 Spread Parameter Estimation

The parameter σ is estimated with Srinivasan’s et al. method [7]. It requires a
pre-normalization phase consisting on two steps: subtract the mean µF from the
training feature vector F , and divide F by its standard deviation σF . Then, σF

is the absolute difference between the two smallest normalized variances. This
completes the PNN modeling since there is no need for a training phase.



4.2 PNN’s Large Sample Size Problem

To avoid the overwhelming processing of millions of training samples, we limited
the sample number. We based our reduction method on Kanellopoulos crite-
ria [8], and the Karhunen Loeve Transformation (KLT). Kanellopoulos criteria
establishes that the training samples number must be at least three times the
feature bands number. Therefore, in our PNN design we use at least three times
the F feature vector size. However, to avoid shortcomings and given the data
availability, we used the Kanellopoulos criteria twice. Thus, for each class we
have a feature vector Fj ∈ ℜ24×4, for all j. The feature vectors’ reduction was
performed with KLT, also known as Principal Component Analysis (PCA). The
KLT is typically used to reduce problem dimensionality. It projects the data to
an uncorrelated data space. It is typically used to reduce the number of features
elements. However, we used it to reduce the sample number, not the feature
elements. We did not project the data to a different subspace. Instead, we
identified the sample elements associated with the 24 largest covariance matrix
eigenvalues. Then, we used those feature vectors to model the PNN, following
the previously described model.

5 Experimental Results and Discussion

We selected three performance metrics to evaluate the two proposed classification
methods. These metrics are

Precision =

∑
TP

∑
TP + FP

, (10)

Accuracy =

∑
TP + TN

∑
TP + FN + FP + TN

, (11)

as well as the area under the receiver operating characteristics (ROC) curve
(AUC). The AUC is a widely used metric because of its superiority in reflecting
the true performance of a classification system. In 10 and 11, TP stands for
“True Positive,” FP “False Positive,” TN “True Negative,” and FN “False
Negative.”

In our experiments we used approximately 56 million training feature vectors
(23 cases). The remaining 19 million (8 cases) were used for validation. These
feature vector are recovered radiances using 1 to produce F with 2. Due to
the large sample size problem, we used the KLT approach to keep a vector
Fj ∈ ℜ24×4. Since we have four classes, the total size is F ∈ ℜ96×4. Then, the
MLE and PNN parameters were estimated and modeled from the resulting F
using the training set. The performance was calculated using only the validation
set. The numerical results were concentrated and averaged to produce Table 1,
showing that the hybrid neuro-probabilistic approach is better than the MLE.
Table 1 also include the processing time per feature vector in milliseconds.

Numerically, the hybrid approach performed better than the classic approach.
In terms of the visual assessment of dust storm detection, visually, the methods



Table 1. Classifiers Performance. The hybrid method performs better than the tradi-
tional approach. The processing time shown here is in milli-seconds.

Precision Accuracy AUC P. Time
MLE 0.5255 0.6779 0.4884 0.0141
PNN 0.7664 0.8412 0.6293 0.2393

Fig. 3. Accuracy bar chart for MLE and PNN.

must show a higher probability in the region where the dust aerosol is present.
Considering, for example, the dust storm of April 6, 2001, covering Chihuahua,
Texas, and New Mexico, classification results are illustrated in Figures 5-9. Fig-
ure 5 shows the true color image. Figures 6-7 show the dust storm probability.
Figures 8-9 show segmented images, following the mapping: DS to red, BLDU
to green, SM to blue, and C0 to black. Clearly, both methods perform well from
the visual assessment perspective. Other examples in the the southwestern USA
and northwestern Mexico area are shown in Figures 10-15.

Both methods performed well in training and validation cases. But, what
about other events outside the southwestern US? Can the methods detect dust
storms over the ocean, even if they were not trained for that? The unfortunate
dust storm in West Africa shown in Figure 1 at the paper’s beginning originated
over land, and extended thousands of miles over the ocean. The complete satel-
lite scan true color image is shown in Figure 16. The dust storm’s probability
for MLE and PNN is shown in Figures 17 and 18 respectively. Similarly, we
present the detection of a dust storm in Australia on October 12, 2009, and
also in southern Asia on February 8, 2010, in Figures 19-21 and Figures 22-24



Fig. 4. Processing time bar chart for MLE and PNN. Results are in milli-seconds.

respectively. Both methods detected the dust storm over land and ocean. It
is evident that both methods provide a strong ability to infer non trivial multi-
spectral data relationships. PNN, due to its hybrid neural-probabilistic nature,
performed better than MLE. On the other hand, MLE is quite conservative.
For some applications this still is a good thing.

6 Conclusion

Two formal methods for classification were studied in the dust storm detection
problem: Maximum Likelihood Estimator (MLE) and the Probabilistic Neu-
ral Network (PNN). MLE is a classic, but PNN is a hybrid probabilistic in-
ference mechanism embedded in a neural architecture. We analyze MODIS
thermal emissive spectral bands to select appropriate feature vectors. Sample
feature vectors were reduced using a known criteria in remotely sensed data.
From these reduced sample feature vectors, the models and parameters were
estimated. After numerical performance evaluation, the hybrid PNN approach
performed better than MLE. Visually, both methods perform accurate detec-
tion and classification. Both PNN and MLE were modeled using known cases
from the south-western US and north-western Mexico over land observations.
However, when tested over land in different countries with different types of
soils and, thus, different type of dust, both methods provided accurate detec-
tion. Furthermore, both were able to classify over-ocean dust storms. Findings
suggest that both MLE and PNN are soil-independent and surface-independent
classifiers. Moreover, important information about dust transport can be ob-
tained by tracking low probability dust storm detections. Both methods perform
1 km spatial resolution classification, which improve traditional Aerosol Opti-
cal Density (AOD)-based methods at 10 km spatial resolution. The presented



methods can be utilized in the analysis of stratospheric dust, thereby, helping
researchers in the understanding of dust aerosol activity and transport.
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Fig. 5. Dust storm event on April 6th 2001. True color image R=B1, G=B4, and
B=B3.

Fig. 6. Dust storm event on April 6th 2001. Dust probability MLE.



Fig. 7. Dust storm event on April 6th 2001. Dust probability PNN.

Fig. 8. Dust storm event on April 6th 2001. Segmentation MLE.



Fig. 9. Dust storm event on April 6th 2001. Segmentation PNN.

Fig. 10. Dust storm event on December 15, 2003. True color image R=B1, G=B4, and
B=B3.



Fig. 11. Dust storm event on December 15, 2003. Dust probability MLE.

Fig. 12. Dust storm event on December 15, 2003. Dust probability PNN.



Fig. 13. Dust storm event on February 19, 2004. True color image R=B1, G=B4, and
B=B3.

Fig. 14. Dust storm event on February 19, 2004. Dust probability MLE.



Fig. 15. Dust storm event on February 19, 2004. Dust probability PNN.

Fig. 16. Dust storm event on September 21, 2009. True color image R=B1, G=B4,
and B=B3.



Fig. 17. Dust storm event on September 21, 2009. Dust probability MLE.

Fig. 18. Dust storm event on September 21, 2009. Dust probability PNN.



Fig. 19. Dust storm event on October 12, 2009. True color image R=B1, G=B4, and
B=B3.

Fig. 20. Dust storm event on October 12, 2009. Dust probability MLE.



Fig. 21. Dust storm event on October 12, 2009. Dust probability PNN.

Fig. 22. Dust storm event on February 8, 2010. True color image R=B1, G=B4, and
B=B3.



Fig. 23. Dust storm event on February 8, 2010. Dust probability MLE.

Fig. 24. Dust storm event on February 8, 2010. Dust probability PNN.


