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ABSTRACT

Dust storms are of interest to study since they are correlated

to an increase in mortality rates due to respiratory illness es-

pecially in the south-western U.S. With the aim of providing

better tools to the understanding of dust storms, we present

models for detection of dust storms from MODIS Terra Level

1B radiances, which can be applied in near real time with

1km resolution, in contrast to those models that are based on

MODIS Aerosol Optical Thickness product that are produced

several hours after reception and with a 10km resolution.

In this paper we present a multispectral multidimensional

signal processing algorithm for detection of dust storms. The

results showed that a Feed-forward Back-propagation Neural

Network-based model perform better in classifying dust, and

discriminating from other signatures such as clouds, smoke,

etc.

Index Terms— Multidimensional signal processing, Im-

age processing, Feedforward neural networks, Remote sens-

ing.

1. INTRODUCTION

Dust storms are a major cause of several physical, environ-

mental and economical hazards. Air pollution from dust

storms is a significant health hazard for people with respi-

ratory diseases and can adversely impact urban areas [1].

There is a direct correlation between exposure to high-levels

of airborne particle concentrations (aerosols) and the increase

in mortality rate from cardiovascular, respiratory illness and

lung cancer. This situation is major concern for health and

safety agencies as well as for the environmental [2] and geo-

logical science agencies [3].

Therefore, timely warnings of dust storms need to be fully

functional in populated regions for health concerns and traffic
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control [4]. However, in spite of the fact that several methods

for detecting dust storms exist, there are still open questions

in the detection process and in dust storms feature extraction.

Furthermore, dust storms are still considered to be an open

problem in analysis and modeling, as well as in the design

of rapid response systems which require to minimize the pro-

cessing time, and to produce results within moderate ad high

resolution imagery.

A number of approaches have been developed within the

remote sensing community for detection and classification

tasks utilizing multispectral data. However there are no

specialized classification systems that use machine learning

approaches to model dust storms. Detection methods based

on principal components such as the one presented by Hillger

et. al. [5] and Agarwal et. al. [6], improve the visualization

of dust storms, however, such methods show other objects

and artifacts besides the dust aerosols. Therefore, there is

still a need to develop more accurate detection methods.

In this paper we will present two image processing meth-

ods for dust storm detection that are able to perform to a

high level of accuracy, and are suitable for real-time appli-

cations. This models are based on feature extraction on the

Moderate Resolution Imaging Spectroradiometer (MODIS)

data. Such models are: Probabilistic model (PD), and Feed-

forward Neural Network model (FFNN). The features ex-

tracted from multispectral MODIS data are within the near

infrared reflectances. When the models are compared, the

neural approach show the best numerical results compared to

ground truths obtained from examples found in the literature.

Furthermore, the probabilistic model show information not

evident in the ground truth giving the ability to find non-trivial

dust information.

In Section 2, the formation of a database of events is de-

scribed. The spectral analysis of dust storms is introduced in

Section 3, while in Section 4, the proposed models for dust

storms are explained. In Section 5, the design of experiments

are presented followed by a discussion of the results and find-

ings. Finally, conclusions are drawn in Section 6.



2. EVENTS DATABASE, LABELING AND

SELECTION OF SPECTRAL BANDS

We have collected 31 different dust storm events using the

alerts record from the National Weather Service in Santa

Teresa, New Mexico [7], as well as many other events re-

ported in the literature. The data is labeled according to

the standard used in weather forecast services. This labels

are: DS, BLDU, SM, and C0. The events labeled as DS (10

events) are considered to be dust storms, and also the BLDU

(15 events) correspond to blowing dust. The DS and BLDU

both are dust events. However, the SM (smoke, 2 cases)

and C0 (4 cases) are considered to be non-dust (background)

information. The C0 correspond to land, oceans, clouds,

etc. We force this distinction since smoke and clouds have

an aerosol optical thickness very similar to the dust. The

total number of events was then separated in design/test and

validation sets, with 23 and 8 cases respectively.

In MODIS level 1B are available the bands needed for

analysis and modeling. Hao et. al.[8] have demonstrated that

bands B20,B29,B31,and B32 (corresponding to 3.75µm,

8.55µm, 11.03µm and 12.02µm respectively) can be ef-

fectively utilized to enhance the visual perception of dust

storms.

In this research we also used the band-math approach in-

troduced by Ackerman et. al.[9] which proposes that band

B32 and B31 should be subtracted to provide a better visual

contrast on the images containing dust storms. Based on the

previously cited research work we have selected four bands

for our analysis and modeling. These four bands compose a

five element feature vector:

F = [B20, B29, B31, B32, B32 − B31]. (1)

3. DUST STORM MODELING

The proposed classification methodologies for remotely

sensed data involve the usage of a uni-variate probabilis-

tic method based on the estimation of the probability density

function of the observed data. The reason for this is their

reliability, and also the fact that the expected output result

can be determined intuitively. On the other hand, machine

learning methods such as supervised learning artificial neural

networks, also provide with an ability to approximate the

true distribution of observed data up to a given level of error.

Thus, in this section we describe the two models for classi-

fication. First, we consider a simple probabilistic method

based on the individual probabilities as a function of two ran-

dom variables (the band-math approach). Second, a method

based on a four-layered feed-forward back-propagation neu-

ral network.

3.1. Simplistic Probabilistic Modeling as a Function of

Two Random Variables

Let X be a discrete random variable associated to the universe

Γ ∈ ℜ of values for multispectral remote sensing data. Let

X(m) be the a random variable associated with the values of

the m−th spectral band of MODIS. Let X
(m)
n be the random

variable associated with the n−th pixel of the m−th spectral

band of MODIS. Let fXn
(X

(m)
n = x) denote the probability

density function of the n−th pixel element of the matrix n of

the m−th spectral band of MODIS to have a value equal to

x.

In this classification method we are interested on display-

ing the probability of the presence of a dust storm based on

MODIS spectral band subtraction B32 − B31. Thus we are

interested in the modeling of fX
32−31
n

(X32−31
n = x), which

could be modeled assuming a Gaussian distribution on the

form
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where µ
X

(m)
n

is the expected value of the random variable x

and σ2

X
(m)
n

is the variance associated with the random vari-

able. MODIS band subtraction B32 − B31 is assumed to

produce the random variable X .

The PDF f
X

(m)
n

(X
(m)
n = x), indeed, is theoretically de-

fined as a function of two random variables g
(
X

(m)
n

)
, more

specifically, the difference of two random variables

X(32−31)
n

= g
(
X(m)

n

)
= X(32)

n
− X(31)

n
(3)

with mean µ
g

“

X
(32−31)
n

” and variance σ2

g
“

X
(32−31)
n

”. In spite

of the fact that these parameters are unknown, they can be

estimated by observation of the data. The only important

variable to observe at this point is the function g(·) from (3)

used in (2).

The estimations are computed over the number of events

selected for modeling and design (see Section 2). In the

approximation process we observe several samples (pixels),

in the order of millions leading to a more accurate parame-

ter estimation. We have computed the histogram for all the

events and from the total frequency observed we have esti-

mated the sample mean µ̂
g

“

X
(32−31)
n

”, and the standard devi-

ation σ̂2

g
“

X
(32−31)
n

”.

3.2. Modeling Based on Multilayered Feed-forward Back-

propagation Neural Networks

Multilayered feed-forward Neural Networks (FFNN) are

of particular interest in pattern recognition and classifica-



tion applications because they can approximate any square-

integrable function to any desired degree of accuracy, and

can exactly implement any arbitrary finite training set. There

exist many remote sensing data classification problems that

have been successfully solved using neural networks besides

dust storms. Therefore we have designed a FFNN to model a

dust storm by approximating the probability density function

f
Cj |X

(m)
n

(
Cj = c|X

(m)
n = x

)
. A simple FFNN contains an

input layer and an output layer, separated by l layers (known

as the hidden layer) or neuron units. Given an input sample

clamped to the input layer, the other units of the network

compute their values according to the activity of the units that

they are connected to in the previous layers. In this model we

consider the particular topology where the input layer is fully

connected to the first hidden layer, which is fully connected

to the second layer and so on up to the output layer.

Given an input x ∈ X
(m)
n , the value of the j−th unit in

the i−th layer is denoted hi
j(x), with i = 0 referring to the

input layer, i = l + 1 referring to the output layer. We refer

to the size of a layer as
∣∣hi(x)

∣∣. The default activation level

is determined by the internal bias bi
j of that unit. The set

of weights W i
jk between hi−1

k (x) to in layer i − 1 and unit

hi−1
j (x) in layer i determines the activation of unit hi

j(x) as

follows:

hi
j(x) = Φ

(
ai

j(x)
)
, (4)

where ai
j(x) =

∑
k W i

jkhi−1
k (x) + bi

j , ∀i ∈ {1, ..., l}, with

h0(x) = x, and where Φ =sigm(·) is the sigmoid activa-

tion function defined as sigm(a) = 1
1+e−a , which could be

replaced by any desired activation function. Given the last

hidden layer, the output layer is computed similarly by

o(x) = h
l+1(x), (5)

h
l+1(x) = Φ

(
a

l+1(x)
)
,

where a
l+1(x) = W

l+1
h

l(x)+b
l+1, and the activation func-

tion Φ is to be defined later in Section 4. Thus, when an input

sample x is presented to the network, the application of (4) at

each layer will generate a pattern of activity in the different

layers of the neural network and produce an output at the end.

3.2.1. Features And Events Selection

To model the dust storms with FFNN we used data from the

same events utilized in the previous classification method.

And, we’ll use all the features described in Section 2. That is

F = [B20, B29, B31, B32, B32 − B31] . (6)

4. EXPERIMENTS AND DISCUSSION

As established in the models for classification of dust storms,

the millions of data points (elements of a feature vector) were

used to estimate the parameters of the probabilistic model.

However, this is impractical to do for the FFNN model. In-

stead, we decided to reduce the number of data points for

training following the criteria in [10] that establishes that the

number of samples required for training the networks must be

at least 3 times the number of bands used as features. There-

fore, in the case of the FFNN, we utilized 500 times the size

of F , thus, exceeding the minimum size criteria. Also it is

important to say that the FFNN has a linear transfer function

(purelin) at the output. The back-propagation method used to

update the weights and biases was the Levenberg-Marquardt

optimization method (trainlm). Also as a learning function

we used the gradient descent with momentum weight and bias

learning function (learngdm). The stop conditions for the

FFNN are either: l) 100 epochs, 2) Performance=0, 3) Valida-

tion failures=5, and 4) Minimum performance gradient=1 ×
10−10. The performance metric is the mean squared error

(MSE). An internal set of samples for training, testing and

validation was randomly selected to evaluate the generaliza-

tion ability of the network. For testing purposes we select

all the features extracted from all events for both methods,

and tested to obtain the probability for that input to be dust

storm. As a performance metric, we used the traditional stan-

dards: precision, accuracy, and one of the ultimate estimation

of general performance, the Area Under the Receiver Operat-

ing Characteristics (ROC) curve (AUC).

4.1. Quantitative and Visual Results

The numerical results are shown in Table 1, where it is clear

that the FFNN methods have the best performance metrics.

The results of our algorithms are displayed for visual assess-

ment of the outputs in Figure 1. Here we present two different

kinds of figures, the first is a true color image re-projected us-

ing the traditional Mercator approach. Follows the second

graphic that shows the probability of the presence of a dust

storm.

Table 1. Performance in detection and in time response of

the models. The processing time is in milliseconds per pixel

vector (ms/pix).

Precision Accuracy AUC P. Time

PD 0.3938 0.4964 0.4993 0.0141
FFNN 0.4554 0.5426 0.7402 0.0472

5. CONCLUSION

The problem of dust storm detection has been addressed in

this paper. First, we constructed a database of events from

satellite observations of MODIS Terra satellite. From the

samples in this database, we modeled a simple probabilistic



method specialized on measuring the probability of the pres-

ence of dust storms given MODIS Level 1B data. Then we

designed a neural network architecture for dust storms detec-

tion. When we compared the probabilistic model against the

Feed-forward Back-propagation Neural Network, FFNN, the

latter reported a strong ability to inferring the relationship be-

tween spectral bands to classify dust and discriminate from

other signatures, such as clouds, smoke, etc.

Moreover, the proposed probabilistic models are suitable

for near real-time applications, such as direct broadcast, rapid

response analysis, emergency alerts, etc. The probabilistic

models are suitable for fast prototyping due to their simplicity,

besides, the theory behind is easy to understand.

The work reported in this document is suitable for the

study of the dust storm problem since the algorithms can

output the dust presence to a irresolution of 1km, which is

an improvement over the methods based on the Aerosol Op-

tical Thickness index (AOT) which has a 10km resolution.

Besides, the MODIS AOT product is generated after several

hours of the satellite pass, increasing the response time in the

analysis and study of the dust storms.
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