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Resumen: Matrices  totalmente  no-negativas  (TNN) 

tienen un amplio rango de aplicaciones.  Recientemente 

se  introdujo  un  novedoso  algoritmo  para  calcular  la 

descomposición  de  valores  singulares  (SVD),  el  cual 

argumenta  mejorar  la  precisión  de  las  aplicaciones 

presentes.  En  este  articulo,  dicho  algoritmo  es 

explorado  y  probado  en  una  aplicación  de 

procesamiento de imágenes multiespectrales: detección 

de  tormentas  de  arena  (segmentación).  Los  datos 

multiespetrales son formulados como matrices TNN, y 

posteriormente  se  calculan  la  descomposición 

bidiagonal  y  los  valores  singulares  para  ser  usados 

como vector de características.  Cuando se compara el 

desempeño  utilizando  los  valores  singulares  con  el 

método tradicional y con el método de alta precisión, se 

encontró  que  este  ultimo  muestra  un  pequeño 

incremento  sobre  el  método  tradicional.  Para  una 

evaluación  visual,  también  se  presenta  el  evento  de 

tormenta  de  arena  en  el  centro  de  México  el  18  de 

Marzo  de  2008,  lo  cual  confirma  los  resultados 

numéricos obtenidos.  

Palabras Clave: tormentas de arena, procesamiento de 

imágenes multiespectrales,  descomposición de valores 

singulares, redes neurales.

Abstract:  Totally  nonnegative  (TNN)  matrices  have 

wide  range  applications.  Recently  a  more  accurate 

algorithm for computing singular value decomposition 

(SVD)  was  developed,  promising  to  improve  current 

application's precision. In this document, the algorithm 

is  explored  and  tested  in  a  multispectral  image 

processing  application:  dust  storm  detection 

(segmentation). The multispectral data is posed as TNN 

matrices, then Bidiagonal Decompositions and Singular 

Values are computed for feature extraction. When we 

compared the traditional SVD numerical  solution and 

the  high  relative  accuracy  SVD algorithm,  we found 

that  the  latter  shows  slight  improvement  over  the 

traditional approach.  For visual assessment, we present 

the  event  of  March  18,  2008,  dust  storm  in  central 

Mexico, and the visual results match with the numerical 

results.

Keywords: dust storms, multispectral image processing, 

singular value decomposition, neural networks.

Introduction
In pattern recognition, the feature vectors used to model 

the system are essential. From the observed features we 

can approximate a model or a pattern.  Moreover,  we 

can  build  statistical  models  from  the  features  and 

extract the most essential information contained in the 

observed  features.  Similarly,  singular  values  contain 

sufficient  information  to  perform  pattern  recognition 

tasks [1]. Singular values are very sensitive, and a small 

change  can  lead  to  large  variations  in  the  data. 

Therefore,  research  is  needed  to  find  more  accurate 

singular  values  estimation  algorithms.  Recently,  Dr. 

Koev in [2,3] introduced a novel algorithm to compute 

singular  values  (SVD).  He  uses  Totally  Nonnegative 

(TNN)  matrices  and  a  bidiagonal  decomposition  to 

perform  computations  at  a  high  relative  accuracy. 

However,  uncertainty  remains  on  the  true  effects  of 

high  relative  accurate  singular  values  computation  in 

pattern recognition applications. This research aims to 

study the true effects of using more accurate singular 

values in a real-life pattern recognition application. The 

information from this study will help to understand the 

accurate computation implications in the computational 

intelligence field. 

In  Section  2  we  briefly  explain  the  concept  of  TN 

matrices.  The  application  to  multispectral  image 

classification is discussed in Section 3. In Section 4 we 

conclude this study. 
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Totally Nonnegative Matrices
Matrices with nonnegative data minors are called TNN 

matrices. TNN's are useful in a variety of applications 

such as pattern recognition [4], feature extraction, and 

data  mining  [5,6].  In  [2,3]  the  author  presented  new 

 algorithms  for  the  computation  of  all 

eigenvalues and singular values of a nonsingular totally 

nonnegative  matrix  to  high  relative  accuracy.  Such 

algorithms  were  applied  to  multispectral  image 

processing,  and  they  will  be  described  in  further 

sections. Also, it is important to remark that since the 

uniqueness  and  existence  of  a  bidiagonal 

decomposition is critical, the kind of matrices is limited 

to contiguous submatrices of square nonsingular totally  

nonnegative  matrices.  From here,  we will  denote  as 

any nonsingular TN matrix. 

Relevant Properties of TNN Matrices

The most relevant properties of TNN matrices are that 

the eigenvalues  of  any TNN are  always  positive and 

also real.  The irreductible  TNN matrices  (also called 

oscillatory) and their eigenvalues are as distinct as their 

singular  values.  The  product  between  two  TNN 

matrices  is  also  a  TNN  matrix.  Also,  a  TNN  is  a 

bidiagonal matrix with positive diagonal and only one 

nonnegative off-diagonal entry. All TNN matrices are 

obtained  by  simple  products  of  such  bidiagonal 

matrices.

Bidiagonal Decomposition of TNN Matrices

The elementary principles of bidiagonal decomposition 

will  be  introduced  here;  however,  a  more  detailed 

explanation can be found in [2,3,7].

It is widely known that small relative perturbations or 

changes in the elements of a TNN matrix can produce 

dramatic changes in the smallest eigenvalues, singular 

values and in . Hence, the TNN matrix is said to be 

ill-constrained.

Following [2,3] we choose to represent a TNN as the 

product of non-negative bidiagonal matrices. Thus, the 

Neville  elimination is  used  since  this  representation 

arises naturally in the process. It is well known that the 

Neville  elimination  reduces  a  matrix  to  its  upper 

triangular  form. Then,  a  zero  value is inserted in the 

element   by subtracting a multiple  of  the row 

 from the row  .  Thus a zero is 

created  at  position   by  subtracting  the 

multiple   of the row   from the 

row  ,  and  so  on.  In  that  way,  the  total 

nonnegativity  is  preserved  during  the  process. 

Therefore,  all  the multiples   are  nonnegative.  This 

elucidates the decomposition

where  is  upper triangular and

is   and  differs  from  the  identity  only  in  the 

 entry.

If we apply the same process to the transpose  , it 

holds the following decomposition 

     (1)

where   is  an   diagonal  matrix  and   is 

 We are following the notation proposed in [2,3], 

where   indicates that the product is taken for   

from  down to . So, the matrices

      

and
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are   lower-  and   upper-bidiagonal, 

respectively.  Therefore,  the  total  decomposition 

becomes

The  off-diagonal  entries  in   and   can  be 

defined  as   and 

The author in [1] uses either   or   to 

denote the nontrivial entries of   and so with . 

Therefore, we can say that the fundamental structure of 

the TNN matrices is given by the following Theorem 

[2,7].

Theorem 1. A matrix  of the form  is TNN if  

and only if it can be uniquely factored as

where   is  an   diagonal  matrix  with  its  

diagonal entries    and 

 are  lower  and  upper  bidiagonal  matrices,  

respectively, such that: 

1.

2. ,  ;  ,  ;  

and , 

3. ,  ,  and 

, ;

4.  implies  that  ;   

implies .

So, we denote the bidiagonal decomposition of a TNN 

matrix   as  .  The  -th  entry  of   is 

equivalent to the multiplier , used to set the -th 

entry in  to a zero value only when , or the 

-th entry of on the diagonal  when . We can also 

conclude that the transpose of  is  and also 

.

Example  of  Bidiagonal  Decomposition  of  a  TNN 

Matrix

For a more clear understanding, we provide an example 

of  the  totally  non-negative  matrix  bidiagonal 

decomposition process.

As an example, we have the  TNN matrix , and 

we want to get . So, we have

and it is stored as

Singular Values Computation and Complexity

The previously described decomposition method [2], is 

the key for an accurate and efficient computation of the 

singular  values.  First,  given  a  TNN  matrix  the 

bidiagonal decomposition   is computed. Second, 

Givens rotations are performed iteratively over   

until it is reduced to a bidiagonal matrix  . Third, the 

singular  values  are  computed  using  the  traditional 

LAPACK method. Such algorithm can be computed in 

at most  time.

The key for the success of this algorithm is that before 

using the LAPACK method, it  does not  perform any 

subtraction  operations.  In  contrast,  the  traditional 

approaches  perform several  floating point  subtraction 

operations  leading  to  floating  point  error  precision. 

Therefore,  by the time LAPACK method is used, the 

original  matrix   is  posed in a form that  minimizes 

floating point subtractions error.
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In the following sections we address an application of 

the singular values based on bidiagonal decomposition, 

used  as  feature  extraction  method  for  multispectral 

image classification.

An Application to Image Segmentation
The segmentation of  an image,  ,  can be 

described  as  a  simple  operation  when 

;  however,  currently this is not the 

typical case.  Instead we have   for 

an 8-bit  digital image. In this section we describe an 

approach  to  multispectral  image  classification  using 

accurate computations of  TNN matrices.

Contiguous  Totally  Nonnegative  Nonsingluar 

Matrices

The  most  important  restrictions  of  the  algorithm for 

accurate TNN calculation is limited to matrices that are

1. Contiguous. 

. 

Ordered from minor to major across, row and 

column elements.

2. Totally  Non-Negative.  .  All  the 

elements  of  are non negative.

3. Non-Singular.  .  The  matrix   is 

different than .

The above  constraints  apply  in  Theorem 1 and  must 

hold  in  order  to  utilize  the  algorithms  and  obtain 

relative high accuracy results.

From Images to TNN matrices

In this problem we addressed the particular case of a 

multispectral image  whose entries  have 

nonnegative values  . Then, let   for 

, with entries .

Such sub-matrices  are constructed from 's entries

 as follows 

for all .

However, to make  greater than zero and contiguous, 

we proposed to add a unitary constant  and then 

apply a row-column cumulative sum operation  , 

having that

Note  that  the  use  of  a  function   in  the  sub-

matrix does  not  results  in  loss  of  spatial  information 

(assuming  such  a  relationship  exists  between  the 

elements of  . Note also that this transformation is 

invertible: 

Experimental Results in Image Analysis

The characteristic values or singular values of a matrix 

are  very  useful  in  pattern  recognition  [8,9],  and  a 

particular case is two dimensional data.  A number of 

robust applications exist, and their solution is not trivial 

[10,11]. In spite of the fact that these applications use 

traditional  Singular  Values  algorithms  for  their 

computations, they report  good results. Therefore,  we 

investigated  whether  for  a  simple  pattern  recognition 

problem,  the  Singular  Values  with  high  relative 

accuracy can produce better performance than using the 

traditional Singular Values algorithms.

Singular Values for Pattern Recognition

To produce Singular Values to high relative accuracy, 

we use the algorithm proposed in [2,3], which is based 

on  the  assumption  of  a  bidiagonalization  of  a  TNN 

matrix. Having a TNN matrix , we can compute the 

singular  values   to  a  high  relative 

accuracy with

where  contains the singular values  to high 

relative  accuracy,   is  the  function  for  the 

computation of the singular values to HRA, and  

is the bidiagonalization of the TNN matrix  . In the 

same way, we will denote the traditional singular values 

computation  as

where  contains the singular values of the TNN matrix 

, and  is the function for the traditional singular 

values computation algorithm.
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For  this  particular  problem  we  have  designed  a 

classification  system based  on  the  singular  values  of 

TNN matrices. This system uses a widely known neural 

network: a three layered feed forward back propagation 

neural network [12,13].

The neural  network architecture described graphically 

in Fig. 1, was determined using the well known cross 

validation technique. The first (input) layer consists of 

9 weighted inputs.  The network has 5 neurons in the 

hidden layer with hyperbolic tangent sigmoid transfer 

function (tansig).  It  has a single neuron in the output 

layer with linear transfer function (purelin). The initial 

weights  across  the  network  are  randomly  generated, 

and all the 9 inputs correspond to the singular values. 

The  network  was  trained  with  the  Levenberg-

Marquardt  backpropagation  algorithm  (trainlm).  The 

training  was  initialized  with  the  default  values: 

,  maximum  epochs=100,  and  goal=0. 

MATLAB  and  the  Neural  Networks  Toolbox  V6.0 

were utilized in the design and experiments.

After  the  composition  of  the  architecture,  we  have 

designed  a  methodology  to  compare  the  results 

obtained when the neural network is trained, validated, 

and  tested  with  and  without  high  relative  accuracy 

singular  values  of  the  TNN's  extracted  from images. 

Both  neural  networks  are  identically  initialized.  The 

methodology consists of classifying all the pixels of an 

image  as  part  of  a  specific  region  of  interest.  In 

computer vision, this process is also known as image 

segmentation. We tested the impact of the accuracy of 

the singular values in an image segmentation task via 

neural networks. Hence, given the output  of the 

neural network, we have 

where   is  the final  classification of the pixel,  and  

denotes that the pixel belongs to the ROI, and  denotes 

that the pixel does not belongs to the ROI.

Comparison of Classification Numerical Results

We  performed  several  experiments  to  compare  the 

classification  performance  using  classic  and  HRA. 

Numerical results are based on the following metrics:

Precision=

Accuracy=

where   stands  for  “True  Positive,”   “False 

Positive,”   “True  Negative,”  and   “False 

Negative.” 

The experiments consists of training the neural network 

described in the previous section to distinguish a dust 

storm given  multispectral  imaging  data.  The  features 

are the singular values of a   multispectral image 

sub-block.  This  sub-block  is  processed  to  make  it  a 

TNN matrix. 

A database  of  approximately  750,000 feature  vectors 

was used for our experiments. Only 375,000 were used 

for training the neural network, and the remaining were 

used  for  validation/testing  purposes.  We  varied  the 

number of training samples from 25,000 up to 375,000 

in increments of 25,000.

The results of our experiments are summarized in Table 

1,  in  which  we  show  the  accuracy  and  precision 

measures  with  and  without  HRA  SVD  computation. 

Also  we  show  the  difference  between  classification 

with classic SVD and HRA SVD. In Fig. 2 and 3 we 

present  a  plot  of precision and accuracy performance 

metrics  comparing  the  classic  SVD  and  the  HRA 

algorithm. It is clear that the HRA accuracy does not 

make a  significant  difference  with  fewer  numbers  of 

training samples. However, we can also conclude that 

in  the  presence  of  a  large  training  data  set,  the 

performance increases slightly as shown in Fig. 4. 

For a visual assessment of the classification results, we 

present  in  Fig.  5  the  case  of  a  dust  storm in central 

Mexico on March 18, 2008. The result  of dust  storm 

classification  with  traditional  SVD  computation  is 

shown in Fig. 6, while the result with the HRA SVD 

computation  is  shown  in  Fig.  7.  Clearly,  the  visual 

results  confirm  the  numerical  results:  HRA  SVD 

perform a slightly better classification.
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backpropagation artificial neural network.
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Table 1:  Neural  Network Classification Results  with Classic  SVD 

and with HRA SVD

Samples Precision Precision Accuracy Accuracy Diff.

25000

50000

75000

100000

125000

150000

175000

200000

225000

250000

275000

300000

325000

350000

375000

0.3989

0.4609

0.4881

0.5054

0.5189

0.5463

0.5688

0.5839

0.5963

0.6065

0.6149

0.6229

0.6302

0.6358

0.6425

0.3989

0.4610

0.4883

0.5058

0.5195

0.5471

0.5700

0.5854

0.5982

0.6087

0.6174

0.6259

0.6336

0.6396

0.6468

0.5147

0.5664

0.5890

0.6034

0.6146

0.6377

0.6564

0.6690

0.6793

0.6878

0.6946

0.7014

0.7076

0.7121

0.7179

0.5147

0.5665

0.5892

0.6038

0.6152

0.6385

0.6575

0.6705

0.6811

0.6900

0.6972

0.7043

0.7110

0.7160

0.7222

0.0000

0.0001

0.0002

0.0004

0.0006

0.0009

0.0012

0.0015

0.0018

0.0022

0.0026

0.0029

0.0034

0.0038

0.0043

Conclusions
We have studied the effects of high relative accuracy 

(HRA)  singular  value  decomposition  (SVD)  on  a 

simple  pattern  recognition  task.  We  summarized  the 

method proposed by Koev [2,3] for totally nonnegative 

matrices  (TNN).  Also  we  posed  the  problem  of 

multispectral  image  classification  to  be  suitable  for 

HRA  SVD  computation.  Then,  we  performed 

experiments with neural networks varying the number 

of  training  samples  to  observe  the  accuracy  and 

precision obtained with and without HRA SVD. 
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Fig. 2  Precision curve using a neural network with both classic SVD 

and with HRA SVD.

Fig. 3  Accuracy curve using a neural network with both classic SVD 

and with HRA SVD.

Fig. 4  Dierence between the accuracy curve with classic SVD and 

HRA SVD.

Fig. 5  True color image of the dust storm event at central Mexico on 

March 18, 2008.
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Experimental results show that for smaller numbers of 

training samples,  there  is  no significant  difference  in 

using HRA SVD or the traditional approach. However, 

when the number of training samples is large, the HRA 

SVD seem to improve classification performance and 

accuracy.

We have presented  a visual example  of  multispectral 

image classification:  dust  storm detection.  The visual 

assessment  of  the  detection  problem  confirms  the 

numerical  results.  The  findings  of  this  work  are 

germane  to  the  pattern  recognition  community.  It  is 

hoped that this information will lead to improved SVD-

based  pattern  recognition  applications  that  can  be 

modeled as TNN matrices.
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