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Abstract—This paper address the dust aerosol detection
problem based on a probabilistic multispectral image analysis.
Two classifiers are designed. First the Maximum Likelihood
classifier is adapted to mode different types of atmospheric
components. The second is a Probabilistic Neural Network
(PNN) model. The data sets are MODIS multispectral bands
from NASA Terra satellite. Findings indicate that the PNN
presents a better classification performance than the ML
classifier using manual segmentations as ground truth. The
proposed algorithm is capable of real-time processing at 1 km
resolutions which is an improvement compared to the 10 km
resolution currently provided by other approaches.

Keywords-Maximum likelihood classification; Neural net-
works; Image processing; Remote sensing.

I. INTRODUCTION

Advances in remote sensing like multispectral instruments

allow imaging of atmospheric and earth materials based on

their spectral signature over the optical range. In particular,

dust air-borne particles (aerosols) propagated through the

atmosphere in the form of dust storms can be detected

through current remote sensing instruments. Dust aerosols

are a major cause of health, environmental, and economical

hazards, and can adversely impact urban areas [1]. From

a scientific perspective, understanding dust storm genesis,

formation, propagation and composition is important to

reduce their impact or predict their effect (e.g., increase of

asthma cases).
Several methods for dust aerosol detection exist [2]. Some

of the most relevant systems are based in the Moder-

ate Resolution Spectroradiometer (MODIS) Aerosol Optical

Thickness (AOT) product [3] which is provided by the

NASA Terra satellite. However, AOT products require a

considerable amount of processing that introduces a sig-

nificant delay (i.e., two days after satellite pass) before it

can provide useful information on aerosol events. Other

approaches are based on the so-called ”band-math” [1]

where simple operations between bands are used to provide

a visual (and subjective) display of the presence of dust

storms.
Given the large amounts of data produced by the MODIS

instrument, it is also desirable to have automated systems

that assists scientist on finding or classifying different earth

phenomena. For example, Aksoy, et al. [4], developed a

visual grammar scheme that integrates low-level features

to provide a high level spatial scene description on land

cover and land usage. As far as the authors know, similar

automated schemes for dust detection based on statistical

pattern recognition techniques have not been reported.

In this paper we present two methods for the detection

of dust storms from multispectral imagery using statistical

classifiers. Based on reported data, we present a feature set

that allows high performance, accuracy, and real-time detec-

tion of dust aerosol. The proposed feature set is extracted

from MODIS spectral bands and tested with the maximum

likelihood classifier and the probabilistic neural network

(PNN). We will show that the PNN approach provides a

better detection and representation of dust storm events.

This paper is organized as follows. Section 2 of the paper

introduces the dust aerosol multispectral analysis. The ML

and PNN models are explained in Section 3 and 4. Section 5

presents experimental results, followed by a brief discussion

on the proposed schemes. Finally, conclusions are drawn in

Section 6.

II. SELECTION AND ANALYSIS OF SPECTRAL BANDS

The MODIS instrument is part of NASA Terra satellite.

MODIS data is currently used in the analysis of different

phenomena like sea temperature and surface reflectivity.

MODIS provides information in 36 spectral bands between

wavelengths 405nm and 14.385μm. These bands are avail-

able in MODIS Level 1B file organization. In the case of dust

aerosol, visual assessment can be achieved using MODIS

bands B1, B3, and B4 which correspond to the range of

human visual perception [5]. An RGB composite true color

image can be produced by the mapping R = B1, G = B4,
and B = B3. Hao et al. [6] demonstrated that bands

B20,B29,B31 and B32 can also be utilized for dust aerosol

visualization. Ackerman et al. [7] demonstrated that band

subtraction B32 − B31 improves dust storm visualization

contrast. Based on these findings, we will form feature
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vectors using pixels values from the recovered bands B20,
B29, B31, and B32.

A ”recovered” radiance is a 16 bit MODIS band recovered

to its original units (W/m2/μm/sr). The recovery process

is given by

L = κ(ι− η), (1)

where L denotes the recovered radiance, κ is the radiance

scale, η denotes the radiance offset, and ι is the scaled

intensity (raw data). For each pixel location (n, m), our

feature vector F ∈ �4 consist of the following recovered

radiances

Fnm =
[
LB20

nm , LB29
nm , LB31

nm , LB32
nm

]T
. (2)

corresponding to the dust sensitive wavelengths.

In our experiments we selected 31 different events cor-

responding to the south-western US, and north-western

Mexico area. The 31 events are known dust storm cases

reported in [8]. From these events, 23 were selected to

train and test the classifiers. Each event contains mul-

tispectral images of size 2030 × 1053 pixels. We man-

ually segmented the images into four classes C =
{dust storm, blowing dust, smoke, background}. The selec-

tion of modeling (training) and testing feature vectors was

performed randomly over the class sets. The complete data

set provides approximately 75 million feature vectors from

which 97.5% correspond to the background class.

III. DUST STORM DETECTION USING THE MAXIMUM

LIKELIHOOD CLASSIFIER

The Maximum Likelihood Classifier (ML) has been

extensively studied in remotely sensed data classification

and analysis [4], [9]. Here we present a straightforward

adaptation of the ML classifier to dust storm detection

using the feature set described in the previous section. Let

fX|k(x) = (X = x|C = k) be the conditional probability

density function of feature vector X having a value x,

given the probability that the k-th class occurs. This might

be referred as the “data likelihood” function. Assuming

normally distributed features (i.e., pixel values), we can

define a discriminant function

ψk(x) = −det (Σk)− (x− μk)T Σ−1
k (x− μk) (3)

for each class k, where Σk the covariance matrix, μk denotes

the mean feature vector, and det (·) is the determinant

function. Then, the decision rule can be simply stated as

x ∈ C = j if ψj(x) > ψi(x) ∀j �= i. (4)

The parameters Σk and μk were obtained from the training

data described in the previous section using the maximum

likelihood estimators (e.g., sample mean and sample covari-

ance matrix).

IV. NEURO-PROBABILISTIC MODELING: THE

PROBABILISTIC NEURAL NETWORK

Specht’s Probabilistic Neural Network (PNN) is a semi-

supervised neural network [10]. It is widely used in pat-

tern recognition applications [11]. The PNN is inspired

in Bayesian classification and does not require training. It

estimate the PDF of each feature assuming they are normally

distributed. The PNN has a four-layered architecture. The

first layer is an input layer receiving the feature vectors

Fnm. The second layer consists of a set of neurons which

are fully connected to the input nodes. The output of this

layer is given by

ϕjk (F ) =
1

(2π)
d
2 σd

e−
1

2σ2 (F−νF
jk)

T (F−νF
jk). (5)

where j is an index labeling each design vector and k is its

the corresponding class. The pattern units νF
jk correspond to

the mean feature vector for each class. The parameter σ is

estimated with the method developed by Srinivasan et al.
[12].

The third layer contains summation units to complete the

probability estimation. There are as many summation units

as classes. The j − th summation unit denoted as Ωj(·),
receives input only from those pattern units belonging to the

j − th class. This layer computes the likelihood of F being

classified as C, averaging and summarizing the output of

neurons belonging to the same class. This can be expressed

as

Ωj (ϕjk (F )) =
1

(2π)
d
2 σd

1
Nj

× . . .

Nj∑

i=1

e−
1

2σ2 (ϕik(F )−�i)
T (ϕik(F )−�i). (6)

The last layer classifies feature input vector Fnm according

to the Bayesian decision rule given by

F ∈ Cj if, . . .

Cj (Ωj (ϕjk (F ))) = arg max
1≤i≤j

Ωi (ϕik (F )) . (7)

A. The PNN Large Sample Size Problem

To avoid the overwhelming processing of millions training

samples, we limited the training samples number. We based

our reduction method on Kanellopoulos criteria [13] which

establishes that the number of training samples must be at

least three times the number of feature bands. Therefore,

in our PNN design we used six times the feature vector

size (e.g., four) requiring 24 training samples per class. In

order to select the testing vectors (24 per class), principal

component analysis (PCA) was applied to a training set

consisting of millions of feature vectors. Then the test

feature vectors associated to the 24 largest eigenvalues were

selected as the PNN training set.
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V. RESULTS AND DISCUSSION

The performance metrics used to compare the two classifi-

cation methods are based on the number of “True Positives”

(TP). “False Positives” (FP), “True Negatives” (TN), and

“False Negatives” (FN). The three performance metrics are

defined as

Precision =
∑

TP∑
TP + FP

, (8)

Accuracy =
∑

TP + TN∑
TP + FN + FP + TN

, (9)

as well as the area under the curve (AUC) of the receiver

operating characteristics (ROC). AUC is widely used metric

because its superiority in reflecting the true performance of

a classification system [14].

The numerical results were concentrated and averaged

to produce Table I, showing that the neuro-probabilistic

approach is better than the ML. A higher precision and

accuracy reflects that a system produce more true positives

results and also reduces the number of false negatives. A

higher AUC reflects how a classifier is able to correctly

classify feature vectors and at the same time minimize the

missclassification errors.

The processing time is an important measure when model-

ing real-time processing systems. In the case of the MODIS

instrument, a complete scan (10× 1053 pixels) is produced

every 6.25 seconds. Thus, a real-time system must perform

a classification in less than or equal to this time. Table I

shows the processing time per scan in seconds. Therefore,

since ML approach takes less than one second to classify

the complete scan, and the PNN approach takes about 2.5

seconds to produce the classification result, both can be con-

sidered suitable for real time detections at 1km resolution.

In contrast, the MODIS AOT product takes two days to be

produced and released at a 10km resolution.

To perform a visual assessment of the results, consider

the dust storm event on April 6th, 2001, shown in Figure

1. Visual results of the classification for ML and PNN

are illustrated in Figure 2 and Figure 3 respectively. The

segmentation shown in Figures 2 and 3 maps dust storm to

red, blowing dust to green, smoke to blue, and background to

black. Visually, both the ML and PNN approaches correctly

classify the dust storm pixels.

Dust storm aerosols spread across large geographic areas

is commonly referred to as the “dust transport”. The dust

transport is studied to see the origins and extensions of a

dust storm. Problems arise when trying to observe the dust

transport since the dust aerosol concentration is reduced as

the storm advances. However, the dust storm transport can

be studied by analyzing the pixels classified as dust storm

but with lower probability. This can be easily achieved by

a mapping of pixel probabilities to the image of either the

ML or PNN classifiers, as shown in Figure 4. This mapping

can be produced by observing the probabilities associated to

Table I
CLASSIFIERS PERFORMANCE.

Precision Accuracy AUC P. Time
ML 0.5255 0.6779 0.4884 0.1484
PNN 0.7664 0.8412 0.6293 2.5198

Figure 1. Dust storm event on April 6th 2001. True color image.

Figure 2. Dust storm event on April 6th 2001. Segmentation with ML.

the final classification of a feature vector. These probabilities

are obtained with (3) and (6) for ML and PNN respectively.

VI. CONCLUSION

The dust aerosol detection problem has been addressed

in this paper. We have modeled probabilistic approaches

for dust storm detection and classification. These models

are specialized on measuring the dust aerosol probability

given MODIS Level 1B data. Novel Machine Learning

techniques were utilized to model a dust aerosol detection

neural architecture. To the best of the authors knowledge,

the presented work is first in its kind. We compared the

Maximum Likelihood classification (ML) model, and the
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Figure 3. Dust storm event on April 6th 2001. Segmentation with PNN.

Figure 4. Dust storm event on April 6th 2001. Dust probability with PNN.

Probabilistic Neural Network (PNN). The PNN showed a

strong inference ability classifying dust, and discriminat-

ing other classes, such as clouds, smoke, and background.

Moreover, the proposed probabilistic models are suitable for

near real-time applications, such as direct broadcast, rapid

response analysis, emergency alerts, etc. The reported work

has relevancy in dust aerosol analysis, since the algorithms

can show the dust presence to a resolution of 1km. This

represents an improvement over Aerosol Optical Thickness

index (AOT) methods, which lack of resolution, and have a

two day generation delay.
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