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a b s t r a c t

This paper presents a method to train a Support Vector Regression (SVR) model for the large-scale case
where the number of training samples supersedes the computational resources. The proposed scheme
consists of posing the SVR problem entirely as a Linear Programming (LP) problem and on the develop-
ment of a sequential optimization method based on variables decomposition, constraints decomposition,
and the use of primal–dual interior point methods. Experimental results demonstrate that the proposed
approach has comparable performance with other SV-based classifiers. Particularly, experiments demon-
strate that as the problem size increases, the sparser the solution becomes, and more computational effi-
ciency can be gained in comparison with other methods. This demonstrates that the proposed learning
scheme and the LP-SVR model are robust and efficient when compared with other methodologies for
large-scale problems.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The Support Vector-based learning field is very active (see Hu
et al., 2004; Bo et al., 2007; Shen et al., 2010; Mangasarian et al.,
1999; Collobert and Bengio, 2004; Papageorgiou et al., 1999). As
a consequence, the treatment of large-scale SVM is of interest to
researchers in the field (see Drucker et al., 1996; Osuna et al.,
1997; Scholkopf and Smola, 2002; Hazan et al., 2008; Du et al.,
2009; Zhu and Sung, 2005; Debnath and Takahashi, 2006; Yan-zi
and Hua, 2009; Huang and LeCun, 2006; Yongping and Dongtao,
2002; Nishida and Kurita, 2008; Papadonikolakis and Bouganis,
2008; Chen et al., 2008; Zhang et al., 2005). However, a number
of open issues are yet to be addressed. Certainly, SVR algorithmic
development seems to be at a more stable stage recently; but in
spite of this, one open issue is to find whether linear programming
(LP) SVR approaches will lead to more satisfactory results or other
useful training strategies (Smola and Scholkopf, 2004; Zhang and
Zhou, 2010). These strategies demand the usage of optimization
techniques developed under the context of SVRs, as they could
facilitate the treatment of large data sets (Smola and Scholkopf,
2004). This may be done in combination with reduced set methods
for speeding up the training phase for large data sets. This topic is
of huge importance as machine learning applications demand algo-
ll rights reserved.
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rithms that are capable of dealing with data sets that are at least
larger than 1 million samples (Smola and Scholkopf, 2004).

In this research the authors introduce Algorithm 1 as an alterna-
tive to address the particular issue of large-scale training of an LP-
SVR. In the remaining sections of this paper, Algorithm 1 will be
explained step by step, which involves three major parts that in-
creases computational tractability of large-scale problems. First,
the Large-Scale Linear Programming Support Vector Regression
(LP-SVR) problem is reduced by variable decomposition, which ex-
ploits LP-SVR structure to produce a lower-dimensional represen-
tation of the decomposed LP sub-problem. The finite termination
of the decomposition strategy is guaranteed by an adaptation of
Torii and Abe (2009) infinite-loop prevention algorithm. Second,
the authors will design a constraint decomposition strategy that
generates a number of smaller sub-problems by again exploiting
LP-SVR structure. The resulting LP problems are solved sequen-
tially in a monotonically non-increasing objective function fashion.
Convergence is guaranteed by adapting Bradley’s et al. (Bradley
and Mangasarian, 2000; Bradley et al., 2002) theorems. Bradley’s
et al. algorithm is known as Linear Programming Chunking (LPC),
and it is depicted in Fig. 1. As shown in the figure, the algorithm
consist on dividing an LP into blocks of smaller LPs without taking
any advantage of the SVR structure.

Third, the two-way-reduced LP-SVR sub-problems (i.e., vari-
ables and constraint reduction) are solved using interior point
methods, which have a very fast rate of convergence. This is the
key that balances the total computational time of performing
two decompositions and solving several LPs. Using any other
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Fig. 1. LP-SVR constraints decomposition strategy. This figure shows an example of
the decomposition of the LP constraints. Here the coefficients matrix A and vector b
are divided in s blocks. This figure shows the linear programming chunking (LPC)
approach by Bradley and Mangasarian (2000) and Bradley et al. (2002).
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approach (i.e., simplex methods) would dramatically increase
computational efforts. The method by Argáez and Velázquez
(2003) is used.

Algorithm 1: Variables and Constraints Decomposition
Strategy for a Large Scale Training Set

Require: B0, initial working set size.

Require: T ¼ fxi; digN
i¼1, a training set with N samples.

Require: s, number of blocks for block decomposition.
1: B  randomly selected B0 indices as the initial wk. set.
2: M indices not in B, that denotes the initial fixed set.
3: Begin .Variables Decomposition.
4: W  fxi; digi2B
5: Fix aj ¼ 0 for all j 2M. .Vars in prob. (3) ignored.
6: Begin .Constraints Decomposition.
7: Define A;b; c with (4a)–(4d).
8: AB;bB; cB  A; b; c

9:

A1
R b1

R
A2
R b2

R
..
. ..

.

As
R bs

R

0BBBB@
1CCCCA  BlockPartitions;AB;bB

10: t ¼ 0 .Iterations counter.
11: Repeat
12: t ¼ t þ 1

13: zðtÞR  IPMSolveLPcR;AR;bR .Solves (20).

14: zðtÞi;B ¼
zðtÞj;R if j ¼ i; for allj 2 R
0 otherwise;

(
15: until cT

BzðtÞB ¼ cT
Bzðtþ4Þ
B

� �
.Stops if no change in 4 it.

16: zB  zðtÞB .Problem is solved for W.
17: End .End Constraint Decomposition.
18: for all j 2 M do .Verify if problem is solved for M.
19: Reconstruct uj; nj w/(13)-(14) verify primal LP.
20: Fix kj ¼ 0, reconstruct sj w/ (15), verify dual LP.

21: eB  VerifyComplementarityzj; sj;B0

22: end for
23: if zjsj – 0 .If problem (3) is not solved then

24: B  CreateNewWorkingSetB;B0; eB
25: else
26: Stop Training
27 end if
28: End .End Variable Decomposition.

29: aþ a� bþ b� n u
� �T  z

Ensure (aþ;a�; bþ; b�), the SVR solution.

In this work, an LP-SVR is trained over large-scale data sets and
at the same time sparser solutions will be produced in terms of the
number of Support Vectors. This results in a more efficient model
in terms of future kernel evaluations which can be made faster.
It will be shown that the proposed model is sparser than the regu-
lar SVR and other SV-based classifiers. Although this was studied
by Zhang and Zhou (2010), it will be demonstrated that as the
problem size increases, the more sparser the solution becomes.
The proposed approach is comparable with other formulations in
terms of performance, which is desirable.

This paper is organized as follows: Section 2 introduces the pro-
posed LP-SVR formulation for large-scale problems, describing its
optimality conditions and its boundaries which are an extension
of Zhang, et al.’s work (Zhang and Zhou, 2010); Section 3 presents
a variables decomposition strategy that is an extension of Torii,
et al. research (Torii and Abe, 2009), that exploits the structure of
the proposed LP-SVR problem increasing its efficiency; similarly,
Section 4 explains a constraints decomposition strategy that is
extended from the work of Bradley and Mangasarian (2000); Sec-
tion 5 analyzes the results of the experiments performed using
the proposed model and decomposition strategies for large-scale
training; and finally, conclusions are drawn in Section 6.

2. Large-Scale LP-SVR formulation

Let us assume that we have training samples f xi; dið ÞgN
i¼1, where

x 2 X # RM is a regressor and d is the desired output. Then, one can
define a non-linear SVR prediction function:

dj � f ðxjÞ ¼
XN

i¼1

ðaþi � a�i Þkðxi; xjÞ þ ðbþ � b�Þ; ð1Þ

where aþ;a� 2 RN
þ; bþ; b� 2 Rþ; kð�; �Þ is a valid kernel function

(Mercer et al., 1909; Courant and Hilbert, 1966; Lanckriet et al.,
2004); aþ ¼ maxfa;0g; a� ¼maxf�a;0g; bþ ¼maxfb;0g; b� ¼
maxf�b; 0g; a 2 RN; and b 2 R; the motivation for splitting
a ¼ aþ � a�, is that we would need these variables to be strictly po-
sitive, i.e., in the set RN

þ, in order to pose the SVR problem as an LP

problem, and the same applies for b ¼ bþ � b�. Kernel functions
(Scholkopf, 2001) map the input feature vectors to the kernel-in-
duced feature space denoted H since these kernel functions follow
the properties of Hilbert spaces (Mercer et al., 1909; Cristianini
et al., 2006). The kernel-induced feature space for non-linear SVR

can be defined as H ¼ f ðxjÞ : f ðxjÞ ¼
PN

i¼1ðaþi � a�i Þkðxi; xjÞþ
n

ðbþ � b�Þg, for all xj 2 RM and j ¼ f1;2; . . . ;Ng. The objective is to
find the set of parameters a and b. One can find these parameters
via constrained optimization.

2.1. Primal, dual, and KKT conditions

First, let us assume that the mapping kðxi; xjÞ : XðN�MÞ�ðM�NÞ #

HN�N exists; i.e., a kernel operation of order ðN �MÞ � ðM � NÞ in
the input space X exists and maps to a Hilbert space H of order
N � N. Then, assume that the slack variables ni; n

�
i , that correspond

to the amount of positive and negative deviation between the
approximated model and the desired output, can be expressed
as simply 2ni (since nin

�
i ¼ 0, see (Lu et al., 2009)); in fact,

ni ¼ di � f ðxiÞ � � and n�i ¼ f ðxiÞ � di � �, where � is a prescribed
parameter coming required by the �-insensitive loss function
defined as follows:

L� d; f ðxÞð Þ � jd� f ðxÞj� ¼
jd� f ðxÞj � � for jd� f ðxÞjP �
0 otherwise:

�
ð2Þ
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Then, let us introduce a slack variable u to avoid inequalities in the
SVR formulation. As a consequence of these assumptions, the fol-
lowing optimization problem is proposed:

min
aþ ;a� ;bþ ;b� ;n;u

XN

i¼1

aþi þ a�i þ 2Cni

� �

s:t

�
PN

i¼1ðaþi � a�i Þkðxj; xiÞ . . .

�bþ þ b� � nj þ uj ¼ �� djPN
i¼1ðaþi � a�i Þkðxj; xiÞ . . .

þbþ � b� � nj þ uj ¼ �þ dj

aþj ;a
�
j ; b

þ
; b�; nj;uj P 0

8>>>>>>><>>>>>>>:
for j ¼ 1;2; . . . ;N:

ð3Þ

Problem (3) has two groups of constraints because it has to ac-
count for errors in either side of the model, which is typical of any
SV regression model. We claim that problem (3) can be posed as a
linear programming problem. To do so, we may define the follow-
ing equalities:

A ¼
�K K �1 1 �I I
K �K 1 �1 �I I

� �
; ð4aÞ

b ¼
1�� d
1�þ d

� �
; ð4bÞ

z ¼ aþ a� bþ b� n u
� �T

; ð4cÞ

c ¼ 1 1 0 0 2C 0ð ÞT ; ð4dÞ

where A 2 Rð2NÞ�ð4Nþ2Þ; b 2 R2N ; z; c 2 R4Nþ2. If we use the above
equalities, then one can claim that the problem has been posed as
an LP problem.

It is claimed that problem (3) is an original formulation for LP-
SVR. In comparison with the m�LPR formulation by Smola et al.
(1999) problem (3) (i) uses the canonical formulation, (ii) com-
putes b, and u implicitly, (iii) does not compute � implicitly, (iv)
does not require the parameter m, (v) promotes efficiency in the
sense of using only one n, and (vi) is a lower dimensional problem.

In comparison with Mangasarian and Musicant (2002), problem
(3) (i) uses the canonical formulation, (ii) computes b implicitly,
(iii) does not compute � implicitly, and (iv) does not require the
parameter l. By (iii) and (iv) one provides the experimenter with
more control of the sparseness of the solution (Zhang and Zhou,
2010). In this case sparseness means fewer number of Support
Vectors.

Similarly, Problem (3) in comparison to Lu et al. (2009) our LP-
SVR formulation (3) (i) uses the canonical formulation and (ii)
computes b implicitly. By (ii) the linear program (LP) size is re-
duced by a factor of N2 þ N.

In comparison with the ‘1-norm LP-SVR formulation by Zhang
and Zhou (2010) problem (3) does not require parameter d and is
more efficient in several ways: (i) uses only one n, (ii) avoids penal-
ization of b, (iii) reduces computational efforts by forcing positivity
in u which reduces the LP problem size by 2N2 þ 2N, and (iv) is a
smaller problem.

Using equalities (4a)–(4d), we can obtain the dual problem of
(3) as follows:

max
k

bT
k

s:t:
AT

kþ s ¼ c
s P 0;

( ð5Þ

where k is a vector of dual variables defined over R2N , and s is a
slack vector variable in R4Nþ2.
Similarly, for the primal (3) and dual (5), the KKT conditions are
defined as follows:

AT
kþ s ¼ c; ð6aÞ

Az ¼ b; ð6bÞ

zisi ¼ 0; ð6cÞ

ðz; sÞP 0; ð6dÞ

for i ¼ 1;2; . . . ;n;

where the equality zisi implies that one of both variables must be
zero. This equality will be referred to as the complementarity condi-
tion. Note that the KKT conditions depend on the variables ðz; k; sÞ,
and if the set of solutions ðz�; k�; s�Þ satisfy all the conditions, the
problem is said to be solved. The set ðz�; k�; s�Þ is known as a pri-
mal–dual solution.

2.2. Optimality and sparseness

Let z� be the solution to the primal problem (3), and let ðk�; s�Þ
be the solution to the dual problem (5). The proposed LP-SVR
exhibits two important properties. First, that it has a global solution.
That is, if z� is a minimum for problem (3), then z� is a global min-
imum since problem (3) is a convex problem (i.e., a linear program-
ming problem) (Dantzig and Thapa, 1997; Dantzig, 1998; Dennis
and Schnabel, 1996; Ferris et al., 2007).

Second, its optimality conditions are well defined. That is, for
problem (3), the KKT conditions (6a)–(6d) are necessary and suffi-
cient for optimality since ðz�; k�; s�Þ is a solution to the primal (3)
and dual (5), then it follows that the KKT conditions (6a)–(6d)
are necessary and sufficient for optimality (Neumann, 1945; Dant-
zig and Thapa, 1997; Dantzig, 1998; Ferris et al., 2007).

One concern of the work presented here is to demonstrate that
the solution of the proposed LP-SVR is better than that of SVRs in
the sense of solution sparseness. Sparseness in a solution is desired
because any SV-based model relies on actual feature vectors xi to
define the optimal set of model parameters ðai; bÞ for all i : ai – 0.
Especially since the feature vectors xi are required for kernel dis-
tances as shown in (1).

Zhang and Zhou (2010) performed a comprehensive study in re-
gard to SVM sparseness. Zhang and Zhou (2010) explains that
sparseness of a learning machine depends on the problem and
the precision of the solution. Then, the authors prove (see Zhang
and Zhou (2010) Theorems 1 and 2) that, for their proposed LP-
SVR, the solution is always sparser than regular SVRs. In fact,
Zhang’s theorems also hold for our formulation. To demonstrate
this, the following definitions are given.

Definition 1 (Support Vectors). Let T ¼ fxi; digN
i¼1 be a training set;

let z be a solution to problem (3); and let (1) be the regression
function for problem (3). Then,

1. VS ¼ xi : di � � < f ðxiÞ < di þ �f g defines the set of Saturated
Support Vectors (SSVs).

2. VE ¼ xi : f ðxiÞ ¼ di þ �; or f ðxiÞ ¼ di � �f g defines the set of
Exact Support Vectors (ESVs).

3. VN ¼ xi : f ðxiÞ < di þ �; or f ðxiÞ > di � �f g defines the set of
Non-Support Vectors (NSVs).

4. Va ¼ xi : ai – 0f g defines the set of Sparse Vectors (SPVs).
5. N ¼ jVSj þ jVEj þ jVNj.
6. S ¼ VS [ VE, means that the union of the SSVs and the ESVs is

the set of Support Vectors (SVs).
7. A ¼ ai : ai – 0f g denotes the set of Non-zero Coefficients of the

decision function (1) and of problem (3).
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Then, since Definition 1 is equivalent to Definition 2 in (Zhang
and Zhou, 2010) by Zhang, et al., then we can say that given an
optimal solution z� to (3), the number of nonzero ai coefficients
of (3) has the following upper bound:

jAj 6 jVEj ð7Þ

for all i : ai – 0. This property states that ESVs characterize the
sparseness of problem (3) just as SVs characterize the sparseness
of any SVR formulation. The above property points out that the pro-
posed LP-SVR problem (3) possess better sparseness than that of
standard SVRs, since there are always several SSVs in standard SVRs,
especially for practical noisy data sets used in recognition or regres-
sion problems (Zhang and Zhou, 2010).

Similarly, from Definition 2 in (Zhang and Zhou, 2010) by
Zhang, et al., we have that the number of nonzero coefficients of
(3) has the following upper bound:

jAj 6 rankðKÞ ð8Þ

and the column vectors kðxj; x1Þ; kðxj; x2Þ; . . . ; kðxj; xiÞ, are linearly
independent for all j 2 A. This means that the LP-SVR regression
function (1) can be exactly reproduced using only those samples
that are SVs, without affecting performance. This property also indi-
cates that vectors kðxj; x1Þ; kðxj; x2Þ,. . .,kðxj; xiÞ, for all j 2 A, in the
decision function f ðxÞ ¼

P
i2Aðaþi � a�i Þkðxi; xÞ þ ðbþ � b�Þ, are line-

arly independent. This means one cannot further reduce the num-
ber of basis functions in the regression function, and also
indicates that the proposed LP-SVR (3) may lead to a sparser model
representation.

It is important to remark that problem (3) was designed to max-
imize computational efficiency without sacrificing accuracy. This
has been achieved by not introducing unnecessary parameters into
the problem and by posing a problem that minimizes the number
of SVs without affecting performance. In spite of this, the training
phase still may be computationally expensive for applications with
N larger than a few thousands. Therefore, the following section
introduces a learning process for the case when N is very large.
3. LP-SVR variable decomposition

Let us consider the proposed Linear Program (3). In order to deal
with large N problems, an idea is to divide the training set
T ¼ fxi; digN

i¼1 in two subsets: a working set W ¼ fxi; digi2B and a
fixed set F ¼ fxi; digi2M; where we identify the members of each
set with two index sets B and M, respectively. These two sets
are disjoint: B \M ¼ ;; and their union contains all the training
set indices: B [M ¼ f1;2; . . . ;Ng. The initial size of B is given by
a parameter B0, (2 6 B0 6 N), chosen heuristically. Note that for
classification problems with q number of classes, B0 is bounded
as q 6 B0 6 N.

Under these definitions, a method is proposed, in which prob-
lem (3) is solved using only a subset of the variables z P 0 from
(4c), and a subset of the constraints Az ¼ b from (4a and 4b). This
approach is known as variables decomposition and constraints
decomposition (Torii and Abe, 2009). The variable decomposition
strategy presented in this research is an adaptation of the work
by Torii and Abe (2009), in which the author decomposes the
variables of a linear program (LP). However, instead of simply
decomposing variables of the LP, one can exploit the properties
of the LP-SVR to make the LP smaller. The constraints decomposi-
tion strategy is an adaptation of the linear programming chunking
(LPC) algorithm introduced by Bradley and Mangasarian (2000)
and Bradley et al. (2002) but modified for LP-SVR efficiency.

Section 4 presents the strategy for solving an LP-SVR using a
subset of the constraints Az ¼ b from (4a and 4b). But first, let us
address the problem of solving an LP-SVR using only a subset of
the variables z P 0 from (4c), which is summarized in Algorithm 2.

Algorithm 2: Variable Decomposition Strategy for Large-Scale
LP-SVR Training. Modification of Torii and Abe (2009)
Algorithm

1: Set B with the first B0 indices from T .
2: For all indices in B Solve LP sub-problem.
3: Verify if the current solution satisfies the KKT conditions

for the indices in M. If so, then Stop.
4: Move inactive constraints indices from B to M. Then, if
jBj þ 1þ dlog jBje 6 Bmax, move the worst 1þ dlog jBje
violating indices from M into B. Go to Step 2. Else, Stop.

5: Those indices that have been at least l times in and out of
the working set B are moved permanently into B.

Each step is explained in the following paragraphs.
In Step 1, a subset of the variables is chosen according to the

indices in B. Then one proceeds to fix aM ¼ aþi � a�i ¼ 0, for all
i 2 M. The problem is to find the variables aB ¼ aþi � a�i , for all
i 2 B; and then, since every fixed variable is associated with two
constraints, these can be ignored under the assumption they are
not Support Vectors, which leads to the following sub-problem:

min
aþB ;a

�
B ;b
þ ;b� ;nB ;uB

X
i2B

aþi � a�i þ 2Cni

� �

s:t:

�
X
i2B
ðaþi � a�i Þkðxj; xiÞ

�bþ þ b� � nj þ uj ¼ �� djX
i2B
ðaþi � a�i Þkðxj; xiÞ

þbþ � b� � nj þ uj ¼ �þ dj

aþj ;a
�
j ; b

þ
; b�; nj;uj P 0

8>>>>>>>>>><>>>>>>>>>>:
for all j 2 B:

ð9Þ

Let z�B ¼ ðaþ�B ;a��B ; b
þ�
; b��; n�B;u

�
BÞ, denote the solution to linear

programming problem (9). Problem (9) is a size-reduced version
of problem (3), for which a comparison between LP problems is
illustrated in Fig. 2. The figure shows problem (3) in the left, and
the reduced problem (9) is shown on the right. Fig. 2 shows the
LP-SVR structure being exploited to reduce problem (3).

To derive the optimality conditions at a later stage, we obtain
the following dual:

min
k;s

X
i2B

ki �� dið Þ þ
X
i2B

kiþjBj �þ dið Þ

s:t:

X
i2B

kiþjBjkðxj; xiÞ �
X
i2B

kikðxj; xiÞ þ sj ¼ 1jX
i2B

kikðxj; xiÞ �
X
i2B

kiþjBjkðxj; xiÞ þ sjþjBj ¼ �1jX
i2B

kiþjBj � ki þ s2jBjþ1 ¼ 1

X
i2B

ki � kiþjBj þ s2jBjþ2 ¼ �1

�ki � kiþjBj þ sjþ2jBjþ2 ¼ 2Ci

ki þ kiþjBj þ sjþ3jBjþ2 ¼ 1i

s P 0

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
for all j 2 B

ð10Þ

and the KKT conditions (6a)–(6d) are rewritten as follows:X
i2B

kiþjBjkðxj; xiÞ �
X
i2B

kikðxj; xiÞ þ sj ¼ 1j; ð11aÞ



Fig. 2. LP-SVR variable decomposition strategy. This illustrates a decomposition of the LP variables vector z and coefficients matrix A in which a subset of the variables ai is
considered for the solution of the LP-SVR problem, for all i 2 B. The shaded area corresponds to an arbitrary selection of jBj indices that produce a reduced LP: zB and AB .
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X
i2B

kikðxj; xiÞ �
X
i2B

kiþjBjkðxj; xiÞ þ sjþjBj ¼ �1j; ð11bÞ

X
i2B

kiþjBj � ki þ s2jBjþ1 ¼ 1; ð11cÞ

X
i2B

ki � kiþjBj þ s2jBjþ2 ¼ �1; ð11dÞ

�kj � kjþjBj þ sjþ2jBjþ2 ¼ 2Cj; ð11eÞ

kj þ kjþjBj þ sjþ3jBjþ2 ¼ 1j; ð11fÞ

�
X
i2B
ðaþi � a�i Þkðxj; xiÞ � bþ þ b� � nj þ uj ¼ �� dj; ð11gÞ

X
i2B
ðaþi � a�i Þkðxj; xiÞ þ bþ � b� � nj þ uj ¼ �þ dj; ð11hÞ

sjaþj þ sjþjBja�j þ s2jBjþ1bþ þ s2jBjþ2b� þ sjþ2jBjþ2ni þ sjþ3jBjþ2uj

¼ 0; ð11iÞ

si;aþj ;a
�
j ; b

þ
; b�; nj;uj P 0

for all i; j 2 B:
ð11jÞ

The primal sub-problem (9) has 4jBj þ 2 variables and 2jBj con-
straints; the dual sub-problem (10) has 2jBj variables and 4jBj þ 2
constraints; and the sub-problem KKT conditions (11a)–(11j) are
necessary and sufficient for optimality as explained before.

In Step 2, one solves the sub-problem (9), (10), (11a)–(11j), e.g.,
using LP interior point methods (IPM). In Step 3, one determines if
problem (3), (5),(6a)–(6d) has been solved successfully. To do this,
one needs to check the KKT conditions of the original problem.
Since variables aþi ;a

�
i ¼ 0, for all i 2 M, and since we have a sub-

problem solution, then, the values for the primal variables ni and
ui for i 2M can be estimated according to the following cases:

Case 1: When the following inequalities holds true for j 2 M:
�
X
i2B
ðaþi � a�i Þkðxj; xiÞ � bþ þ b� � �þ dj P 0; ð12aÞ

X
i2B
ðaþi � a�i Þkðxj; xiÞ þ bþ � b� � �� dj P 0; ð12bÞ
then, the values for the jth index can be computed from (6b) as
follows:

uj ¼ 2
X
i2B
ðaþi � a�i Þkðxj; xiÞ þ bþ � b� � dj

 !
; ð13aÞ

nj ¼ 0; ð13bÞ

where u is the vector of slacks that preserves the equality in the
constraints.

Case 2: When the inequalities (12) hold false, then the values
for the j-th index are computed as follows:

uj ¼ 0; ð14aÞ

nj ¼ �2
X
i2B
ðaþi � a�i Þkðxj; xiÞ þ bþ � b� � dj

 !
: ð14bÞ

Next, the values for the dual variable are fixed ki ¼ 0 for all
i 2 M. Then, the values for the dual slack si for i ¼ 1;2; . . . ;

4jMj þ 2 are estimated from (6a) as follows:

sj ¼ 1j �
X
i2B

kiþjBjkðxj; xiÞ þ
X
i2B

kikðxj; xiÞ; ð15aÞ

sjþjBj ¼ �1j �
X
i2B

kikðxj; xiÞ þ
X
i2B

kiþjBjkðxj; xiÞ; ð15bÞ

s2jBjþ1 ¼ 1�
X
i2B

kiþjBj þ ki; ð15cÞ

s2jBjþ2 ¼ �1�
X
i2B

ki þ kiþjBj; ð15dÞ

sjþ2jBjþ2 ¼ 2Cj þ kj þ kjþjBj; ð15eÞ

sjþ3jBjþ2 ¼ 1j � kj � kjþjBj

for all j 2M:
ð15fÞ

Note that KKT primal and dual conditions (6a)–(6d) have been
already satisfied by (13a), (14a), and (15a); however, the comple-
mentarity conditions have not. Then, we verify if the following
conditions hold:

zisi ¼ 0; ð16aÞ



Fig. 3. Proposed LP-SVR constraints decomposition strategy. The proposed decom-
position strategy exploits the LP-SVR structure to further reduce the problem size.
Note that the reduced problem size is inversely proportional to s. The notation Aij

refers to an element of the matrix A at the i-row and jth column.
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z; s P 0 ð16bÞ

for all i ¼ 1;2; . . . ;4jMj þ 2.
If there were no violations to (16), the global problem is said to

be solved, and the method has converged for the set of parameters
given. The global LP-SVR Support Vectors xi are those whose
ðaþi � a�i Þ – 0 for all i 2 B.

In Step 4, we verify if there were any violations to (16a); in such
case, a new working set is created. To do this, we look for inactive
constraint indices (i.e., those ðaþi � a�i Þ ¼ 0 for all i 2 B) and move
them into M and then, we replace those indices with the indices
that most violate the complementarity conditions (16a) fromM into
B. By ‘‘most violation’’ we mean that the the complementarity con-
dition (16a) has been sorted and we chose the largest violations first.

For practical purposes, a record is kept indicating which indices
have been moved fromM into B. In the case that all the constraints
in B are active (i.e., all are Support Vectors), then, the size of B is
incremented by a scaling exponent as follows:

jBjðtþ1Þ ¼ jBjðtÞ þ 1þ dlog jBjðtÞe; if jBjðtÞ þ 1þ dlog jBjðtÞe 6 Bmax

Bmax; otherwise

(
ð17Þ

where Bmax is the maximum working set size allowed by the
researcher, which is bounded to B0 < Bmax 6 jMj, and t is the
current iteration at the variable decomposition strategy. Eq. (17)
is proposed here to smooth the increments in the working set
size.

Steps 1–4 complete one iteration. These steps should be re-
peated until convergence. However, if after l iterations, the method
has not converged, a check is performed to see if there are any indi-
ces that have been moving from M into B for at least l times. The
constant l is an arbitrary parameter given by the researcher: typi-
cally l ¼ 10.

Finally, in Step 5, we check if the condition t > l holds true, if it
does, the indices will be added to B permanently, thus, preventing
infinite loops.

The fact that our algorithm stops when the KKT conditions are
satisfied guarantees the convergence to an optimal solution. Fur-
thermore, our algorithm avoids a possible infinite loop by limiting
indices from going in and out of the set B for an undefined number
of iterations. This guarantees that the algorithm will converge in a
finite number of iterations. Of course, the solution will be sub-
optimal if the algorithm stops when the maximum number of
iterations tmax is reached, or if the maximum working set size
Bmax has been reached without a solution.

The next section explains the method for chunking the
constraints.
4. LP-SVR constraints decomposition

Although the variable decomposition approach reduces the
complexity of the linear program (LP) solution, the problem is likely
to be increasing in size until it reaches the maximum working set
size Bmax. As the LP size increases at each iterate the problem will
become much slower proportionally to the current working set size
jBj. To overcome this difficulty, we present a modification of the
constraint decomposition algorithm originally introduced by Brad-
ley and Mangasarian (2000). In this algorithm which an LP-SVR sub-
problem is solved using a subset of the constraints. This can be
achieved by dividing the LP-sub-problem into blocks of smaller size
and then we modify it such that the LP-SVR properties can be
exploited one more time to further reduce the sub-problem.

The process of decomposing the constraints is illustrated in
Fig. 3 and summarized in Algorithm 3. The next paragraphs explain
the processes involved in the completion of Algorithm 3, and pro-
pose some definitions and equivalences necessary to the success of
the algorithm.

Algorithm 3: Constraints Decomposition Strategy for Large-
Scale LP-SVR Training: a modification of the algorithm
introduced by Bradley and Mangasarian (2000)

Require: LP-SVR with subset of variables: cB;bB;AB .
Require: Parameters: tmax, and s.
1: Partition AB j bBð Þ into s blocks with (22), where

1 < s < jBj. Then obtain constraint-sub-blocks
AR j bRð Þ.

2: For all indices in R, Solve LP sub-sub-problem (23).
3: If t 6 tmax, then go to Step 2 with a new block.
4: With (24) obtain cT zðtÞ for B.
5: If cT zðtÞ ¼ cT zðtþtmaxÞ, then Stop. Else, go to Step 2 with a new

block.
Ensure: zðtÞ.

One can pose problem (9) as an LP problem by defining the fol-

lowing equalities:

AB ¼
�KB KB �1 1� IB IB
KB �KB1 �1 �IB IB

� �
; ð18aÞ

bB ¼
1B�� dB
1B�þ dB

� �
; ð18bÞ

zB ¼ aþB a�B bþ b� nB uB
� �T

; ð18cÞ

cB ¼ 1B 1B 0 0 2CB 0Bð ÞT ; ð18dÞ
where AB 2 Rð2jBjÞ�ð4jBjþ2Þ; bB 2 R2jBj; zB; cB 2 R4jBjþ2. In this manner,
problem (9) is posed as an LP problem.

Let zB be the unknown in the linear program given by
minzB cT

BzB
	 


subject to ABzB ¼ bB; zB P 0f g; which is equivalent
to (9). Then, allow the augmented matrix AB j bBð Þ to be
decomposed into the following s blocks:

ð19Þ

for all 1 < s < jBj.
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Let t ¼ 1;2; . . ., denote the current iteration and let zðtÞB be the
solution to the following linear program:

zðtÞB ¼ arg min
zB

cT
BzB

Aðt mod sÞ
B zB � bðt mod sÞ

B ¼ ep

�Aðt mod sÞ�1
B zB � �bðt mod sÞ�1

B ¼ �ep

�����
( )

; ð20Þ

where ep, and �ep are errors for the LP primal (20),
�Að0ÞB j �bð0ÞB

� �
¼ ;, and �AðtÞB j �bðtÞB

� �
is the set of active con-

straints (i.e., those equalities in (20) with ep; �ep ¼ 0 for zðtÞB ) with po-

sitive Lagrange multipliers. When cT
BzðtÞB is equal to cT

BzðtþtmaxÞ
B , then

stop. Typically, the integer tmax, controlling the stopping criteria,
is set to tmax ¼ 4 or any small integer strictly positive (Bradley
and Mangasarian, 2000). In (20), the bar notation, (��), is used to
differentiate which blocks of the problem are being involved in a
particular iteration.

As an example, let us consider t ¼ 1; s ¼ 4; at this point,
ð1mod4Þ ¼ 1 and ð1mod4Þ � 1 ¼ 0, therefore, the LP in (20) only
requires to satisfy the first part and not the second since it is empty
by definition. In the next iteration t ¼ 2; s ¼ 4; ð2mod4Þ ¼ 2 and
ð1mod4Þ � 1 ¼ 1, therefore, the LP in (20) requires both the first
and the second part to be satisfied; however, recall that in the pre-
vious iterations only active constraints were preserved for that
block. Bradley and Mangasarian (2000) demonstrated that this
problem converges iteratively to the solution zB (See Theorem 3.2
in (Bradley and Mangasarian, 2000)).

However, for the proposed LP-SVR it is obvious that if the
decomposition s is carefully chosen, variables can be further
reduced without affecting the solution at all. The key is for con-
straints associated with the same variable to be within the same
block; when they are, all other variables can be omitted. Consider
the constraints (18a) and consider the block-decomposition choos-
ing the first 2N

s

� 
rows; then, the variables in the first 2N

s

� 
rows may

have constraints related to the same variable in a different block.
Therefore, it makes more sense (to our problem) to choose the
blocks (19) in such a way that the properties of the proposed
LP-SVR are exploited.

Clearly, if one uses (19) to select the elements of the s-th block,
the block itself can be further reduced by taking into account that
variables associated with constraints that do no appear in the s-th
block do not play any role in the problem solution. To do so, define
Table 1
Summary of the dimensions and properties of the data sets.

Dataset Classes Features M Training N

Ripley 2 2 250
Wine 2 13 110
ADA 2 48 4147
GINA 2 970 3153
HIVA 2 1617 3845
NOVA 2 16;969 1754
SYLVA 2 216 13;086
Iris 3 4 130
FERET 1199 393;216 3323
Color FERET 1199 393;216 12;927
Textures A 2 32;768 98;304
Textures B 5 65;536 327;680
Textures C 10 131;072 262;144
Textures D 16 262;144 524;288
NEPOOL R 24 1461
MODIS A R 3 40 million
MODIS B R 4 2:7 million

Spiral 2 2 200
Synthetic S 3 2 3 million
Synthetic NS 3 2 3 million
f ðxÞ ¼ sincðxÞ R 1 200
f ðxÞ ¼ sincðxÞ � p R 1 1 million
R as the set of indices of variables associated with the s�th block,
where R�B and jRj < jBj. Then, redefine (19) as follows:

ð21Þ

for all 1 < s < jBj, where

AðsÞR j bðsÞR
� �

¼
�K i;j;B K i;j;B �1 1 �Ii;j;B Ii;j;B

K i;j;B �K i;j;B 1 �1 �Ii;j;B Ii;j;B

�
1i;B�� di;B

1i;B�þ di;B

���� �
ð22Þ

for all i; j 2 R, where AðsÞR 2 Rð2jRjÞ�ð4jRjþ2Þ;bðsÞR 2 R2jRj, and conse-
quently zðsÞR ; c

ðsÞ
R 2 R4jRjþ2. This can greatly reduce the size of the

problem since jRj < jBj.
Next, the LP solution needs to be redefined. At iteration

t ¼ 1;2; . . ., let zðtÞR be the solution to the following linear program:

zðtÞR ¼ arg min
zR

cT
RzR

Aðt mod sÞ
R zR � bðt mod sÞ

R ¼ ep

�Aðt mod sÞ�1
R zR � �bðt mod sÞ�1

R ¼ �ep

�����
( )

; ð23Þ

where ep; �ep are errors for the LP primal (23), �Að0ÞR j �bð0ÞR
� �

¼ ;,

and �AðtÞR j �bðtÞR
� �

is the set of active constraints (i.e., those equal-

ities in (23) with ep; �ep ¼ 0 for zðtÞR ) with positive Lagrange multipli-

ers. Then, for the linear program (20), the solution zðtÞB at iteration t
is given by

zðtÞi;B ¼
zðtÞj;R if j ¼ i; for all j 2 R
0 otherwise

(
ð24Þ

for all i 2 B.
One of the main advantages is that the problem size can be very

small, especially if the number of blocks is large. However, the size
may increase as iterations progress. In the worst case scenario the
size will be the same as in the traditional linear programming
chunking (LPC) algorithm in which no SVR properties are
exploited.
Testing NI Reference

1000 Osuna and De Castro (2002)
20 Kinzett et al. (2008)

415 Platt (1999); Joachims, 1999
315 Platt (1999); Collobert and Bengio, 2001
384 Cawley (2006)
175 Cawley (2006)

1308 Collobert and Bengio (2001); Cawley, 2006
20 McGarry et al. (1999)

3816 Phillips et al. (1998) and Phillips et al. (2000)
1199 Phillips et al. (1998) and Phillips et al. (2000)

98;304 Rosiles (2004)
327;680 Rosiles (2004)
262;144 Rosiles (2004)
524;288 Rosiles (2004)

366 Cheung et al. (1999)
80 million Rivas-Perea and Rosiles (2010)
40 million Rivas-Perea and Rosiles (2010)

101 Xu et al. (2009)
3 million –
3 million –

200 Peng (2010)
1 million –



Fig. 4. Training time as a function of the problem size. LS LPSVR = Large-Scale
LPSVR (proposed); LS SVM = Large-Scale SVM (Collobert and Bengio, 2001);
IncSVM = Incremental SVM (Yang et al., 2005); LSSVM = Least-Squares SVM (Wang
and Hu, 2005; Cawley, 2006); B.Dec.Trees = Bagged Decision (Regression) Trees
(Cutler et al., 2009); FFNN = FeedForward Neural Network.
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5. Experimental evaluation of LS LP-SVR

To show the effectiveness and efficiency of the proposed
algorithms, simulations were performed over different data sets.
The summary of the properties of these data sets are shown in
Table 1. Note that the simulations include classification in two
and multiple classes, as well as regression problems. The Synthetic
S is a non-linearly separable three-class problem whose classes
are normally distributed. The Synthetic NS is identical, however,
the classes are non-separable. The two last examples are for regres-
sion purposes. The data sets objective is to fit the ‘‘sinc’’ function,
which is a typical function to approximate (Peng, 2010). The
f ðxÞ ¼ sincðxÞ consists of unevenly sampled points from the sinc
function. Similarly, f ðxÞ ¼ sincðxÞ � p consists of unevenly spaced
points from the sinc function that are affected by multiplicative
white Gaussian noise (WGN); this makes it a very difficult function
to fit. For all other data sets we have provided a reference where the
reader can find the details of each dataset. The kernel choice in this
research is only the following radial basis function (RBF) kernel:
e�

1
2r2kxi�xjk22 . This choice is justified since RBF kernels are the most

discriminant kernels (Bermani et al., 2005; Hadzic et al., 2000)
and since RBF kernels produce very large data sets, fitting perfectly
with what we intend to demonstrate in this research. These exper-
iments show results using a testing set D ¼ fxi; digNH

i¼1, where NH is
the number of samples available for testing. The testing set D has
never been shown to the LP-SVR model before. In regard to the
parameters required by the proposed model and kernel, i.e., �;r,
and C, those were determined using an inexact globalized quasi-
Newton strategy that searches for the best set of parameters mini-
mizing error metrics as an optimization problem (Rivas-Perea et al.,
2013). The architecture of the Feed-Forward Neural Network
(FFNN) was determined on a trial and error basis and in every
single case the best architecture was a three-layered one:
input! hidden! output, that is, one input layer, one hidden layer,
and one output layer; however, the number of neurons in the input
and output layer varied in each case. Note that in some cases
researchers prefer to treat the input layer as part of the hidden
layer, in which case, this research would have two hidden layers
and an output layer. Specifically, in this research the input layer
and the hidden layer have a variable number of neurons, while
the output layer has always one neuron which brings fairness to
further comparisons with other methods. The number of neurons
was determined by exhaustively searching all possible combina-
tions of neurons in the range of ½1;100�, repeating the experiments
ten times for each possible combination, averaging the result, and
observing the combination of neurons that produced the lowest
average classification error. That combination of neurons, thus,
was used for that particular problem. The ten times that each
possible combination is tried is implemented using an ‘‘external’’
10-fold cross-validation. That is, the training set is sliced into ten
different parts of (ideally) equal size, then the network is trained
with nine slices and tested with the remaining slice of data. At
the end the results are averaged and presented as classification er-
ror. For consistency, in all cases we used the sigmoid activation
function for the input and hidden layer; it is well known that
although certain activation functions may perform well for particu-
lar problems, in the average case a sigmoidal kind of function can
also perform well for most of the problems (Haykin, 2009). Never-
theless, the output layer’s activation function varied according to
the need of each classification or problem: linear for most classifi-
cation problems and softmax for most regression problems (Hart
et al., 2001). This research uses the ‘‘Levenberg–Marquardt’’
algorithm along with with a back-propagation strategy for all cases.

Fig. 4 shows how the total training time (in minutes) varies as
the size of a problem increases. The figure summarizes the results
of solving several different problems in which we vary the number
of samples used for training, then we average the training time to
produce the curves shown. Note that there are some approaches
that did not continue further in the training; this is because they
reached a state of computational intractability when dealing with
the problem, and they had to stop. For this reason, there is no re-
cord of such methods going further in the training as the problem
size increases. With respect to the problems considered when
producing Fig. 4, we have used all the problems presented in this
research and also we kept drawing samples from the synthetic data
sets ‘‘Synthetic S’’ and ‘‘Synthetic NS’’ as well as from both the
‘‘f ðxÞ ¼ sincðxÞ’’ and the ‘‘f ðxÞ ¼ sincðxÞ � p’’ data sets until all other
methods would break due to computational intractability. We
drew up to 130 million samples of these data sets. Fig. 4 suggests
that the proposed approach is slower at small to medium size
problems when compared with a FFNN and a LS SVM; however,
it is clearly faster for large size problems.

At this point it is important to remark that in every experiment,
the linear program being solved exhibited a monotonic non-
increasing behavior of the objective function as iterations pro-
gressed. As mentioned before in Section 1, the proposed sequential
optimization has the property of a never increasing objective func-
tion, similar to Bradley’s et al. work (Bradley and Mangasarian,
2000; Bradley et al., 2002). Also it was observed that most small
size and small number of classes were solved in very few iterates;
the converse is also true, as the problem size and number of classes
increase, the model takes more iterations to solve the problem.
Nevertheless, the objective function is always monotonically
decreasing.
5.1. Classification

In order to measure the quality of the classifier one can also
measure its generalization ability, compared with other classifiers,
by observing a number of different criteria. The most used criteria
is the accuracy of the classifier that is computed by counting the
number of correct classifications and dividing it by the number
of observations (Haykin, 2009). Table 2 shows an analysis of the
accuracy of the proposed method by comparing it with other
approaches. The table shows, in each row, the accuracy of the



Table 2
Comparison of the accuracy of the different approaches. The name of the approaches in each column is as follows: LS SVM = Large-Scale SVM (Collobert and Bengio, 2001); LS
LPSVR = Large-Scale LPSVR (proposed); IncSVM = Incremental SVM (Yang et al., 2005); LSSVM = Least-Squares SVM (Wang and Hu, 2005; Cawley, 2006); FFNN = FeedForward
Neural Network.

Dataset Classifiers

LS SVM LS LPSVR IncSVM LSSVM FFNN

Ripley 0:916 (1) 0:915 (2) 0:910 (3) 0:906 (5) 0:908 (4)
Wine 1:000 (2.5) 1:000 (2.5) 1:000 (2.5) 1:000 (2.5) 0:990 (5)
ADA 0:841 (3) 0:851 (1) – (5) 0:843 (2) 0:839 (4)
GINA 0:997 (2) 0:997 (2) – (5) 0:990 (4) 0:997 (2)
HIVA 0:870 (1.5) 0:870 (1.5) – (4) – (4) – (4)
NOVA 1:000 (2) 1:000 (2) 1:000 (2) – (4.5) – (4.5)
SYLVA 0:998 (2) 0:999 (1) – (4.5) – (4.5) 0:996 (3)
Iris 1:000 (1.5) 1:000 (1.5) 0:950 (4) 0:950 (4) 0:950 (4)
FERET 0:772 (1) 0:770 (2) – (4.5) – (4.5) 0:768 (3)
Color FERET 0:879 (1) 0:878 (2) – (4) – (4) – (4)
Textures A 0:966 (1.5) 0:966 (1.5) – (4) – (4) – (4)
Textures B 0:958 (1.5) 0:958 (1.5) – (4) – (4) – (4)
Textures C 0:927 (2) 0:928 (1) – (4) – (4) – (4)
Textures D 0:925 (1.5) 0:925 (1.5) – (4) – (4) – (4)
Spiral 1:000 (2.5) 1:000 (2.5) 1:000 (2.5) 1:000 (2.5) 0:990 (5)
Synthetic S 0:989 (2) 0:990 (1) – (4) – (4) – (4)
Synthetic NS 0:984 (2) 0:985 (1) – (4) – (4) – (4)

Avg. 0:942 (1.79) 0:943 (1.61) – (3.82) – (3.85) – (3.91)

Table 3
Balanced Error Rate (BER) for two-class classification problems. The rank of each classifier for each problem is shown in parenthesis. The average BER and rank is shown below;
these suggest that the proposed approach is the second best ranked, yet, the difference between the best ranked method and the proposed is still less than the CD; that is,
2:05� 1:61 ¼ 0:44 < 0:65, suggesting that they do not perform significantly different, which in this research is desired. In this case, the CD for only two classifiers for a level of
significance of a ¼ 0:05 is the following: CD ¼ 1:960

ffiffiffiffiffiffiffi
2�3
6�9

q
¼ 0:65.

Dataset Classifiers

LS SVM LS LPSVR IncSVM LSSVM FFNN

Ripley 0:084 (1) 0:085 (2) 0:09 (3) 0:094 (5) 0:092 (4)
Wine 0:000 (2.5) 0:000 (2.5) 0:000 (2.5) 0:000 (2.5) 0:008 (5)
ADA 0:135 (1) 0:148 (2) – (5) 0:15 (3.5) 0:15 (3.5)
GINA 0:003 (2) 0:003 (2) – (5) 0:009 (4) 0:003 (2)
HIVA 0:171 (1.5) 0:171 (1.5) – (4) – (4) – (4)
NOVA 0:000 (2) 0:000 (2) 0:000 (2) – (4.5) – (4.5)
SYLVA 0:001 (1) 0:006 (2) – (4.5) – (4.5) 0:014 (3)
Textures A 0:034 (1) 0:035 (2) – (4) – (4) – (4)
Spiral 0:000 (2.5) 0:000 (2.5) 0:000 (2.5) 0:000 (2.5) 0:01 (5)

Avg. 0:047 (1.61) 0:049 (2.05) – (3.61) – (3.83) – (3.88)

P. Rivas-Perea, J. Cota-Ruiz / Pattern Recognition Letters 34 (2013) 439–451 447
classifier for the data set associated with that row accompanied by
the rank of the classifier (shown in parenthesis) in comparison
with the other classifiers. The ranking is carried following Fried-
man’s test method (Demšar, 2006); in the case of a tie in the rank
is equally divided between the tied elements (Zar, 1996). The last
row includes an average of the accuracy (if it can be computed)
and of the rank. It can be observed that the proposed approach
has comparable results to other SVR/SVM-based and neural ap-
proaches. As problem size increases, a slight increase in accuracy
can be observed. The proposed method is ranked above all the oth-
ers in the average case. Also, in average, the proposed approach
posses a slightly higher accuracy. However, the meaningfulness
of the table can be compromised when classes are unbalanced, that
is, when there are more samples of one class than of the others.
With this in mind this research also considers the estimation and
comparison of the Balanced Error Rate (BER) for the different
methods and data sets; Table 3 shows such comparison. The BER
is generally defined as follows:

BER ¼ 1
2

FP
TN þ FP

þ FN
FN þ TP

� �
; ð25Þ

where FP; TN; FN, and TP denote the total count of ‘‘false positives’’,
‘‘true negatives’’, ‘‘false negatives’’, and ‘‘true positives’’ respec-
tively. The advantage of using BER over the accuracy is that, the
overall accuracy can be biased if classes are unbalanced, but BER
offers a ‘‘fair’’ (i.e. non biased) performance error measure for
two-class problems. It can be seen from Table 3 that the proposed
LP-SVR learning model does not affect dramatically the perfor-
mance of the classifier. On the contrary, we can observe that the
error has negligible difference when compared to the others, that
is, in the average case.

For the performance analysis of multi-class classification prob-
lems, the Cohen’s kappa measure, j, is better suited (Carletta,
1996). The j measure scores the number of correct classifications
independently for each class and aggregates them. This way of
scoring is less sensitive to randomness caused by different number
of examples in each class, therefore, it is less sensitive to become
biased. Table 4 compares the different j values for each problem
and classifier. The table indicates that in the average case the per-
formance of the proposed approach negligible compared with the
other methods; however, note that for problems of a larger-scale
the proposed approach performs better. Clearly, the average rank
of the proposed approach is also the best.

Table 2–4, as a whole, suggest the following: (i) that the differ-
ence in performance between the best classifier and the proposed
approach is very small, negligible in the average case; and (ii) that
the rank of the classifiers, in the average case and for unbiased
estimators, seems to favor the proposed approach for large-scale
data sets in multi-class problems. Furthermore, this research



Table 4
Analysis of the Kappa coefficient (j) for multi-class classification problems. The rank is also shown in parenthesis. The last row indicates the average j and rank for each classifier.
The last row suggests that the proposed approach performs better than the rest, in the average case. However, the difference between the two best methods is still under the CD,
i.e., 1:69� 1:31 ¼ 0:38 < 0:69, this indicates that there is no significant difference between the two methods, which is desired. The value for the CD, in the case of comparing only
two classifiers with a level of significance of a ¼ 0:05, is computed as follows: CD ¼ 1:960

ffiffiffiffiffiffiffi
2�3
6�8

q
¼ 0:69.

Dataset Classifiers

LS SVM LS LPSVR IncSVM LSSVM FFNN

Iris 1:000 (1.5) 1:000 (1.5) 0:950 (4) 0:950 (4) 0:950 (4)
FERET 0:772 (1) 0:770 (2) – (4.5) – (4.5) 0:768 (3)
Color FERET 0:879 (1) 0:878 (2) – (4) – (4) – (4)
Textures B 0:944 (2) 0:953 (1) – (4) – (4) – (4)
Textures C 0:919 (2) 0:923 (1) – (4) – (4) – (4)
Textures D 0:920 (2) 0:924 (1) – (4) – (4) – (4)
Synthetic S 0:979 (2) 0:984 (1) – (4) – (4) – (4)
Synthetic NS 0:973 (2) 0:989 (1) – (4) – (4) – (4)

Avg. 0:923 (1.69) 0:928 (1.31) – (4.06) – (4.06) – (3.88)

Table 5
Nemenyi’s test, Holm’s and Shaffer’s procedures to analyze the Accuracy of the method. Here Ri denotes the rank of the ith approach, the level of significance is a ¼ 0:05, k is the
number of approaches, and ti is the maximum number of hypotheses that can be true given that ði� 1Þ hypotheses are false. The modified a value for the Nemenyi’s test, Holm’s
and Shaffer’s procedures is represented as aNM ;aHM , and aSH respectively.

i Approaches compared z ¼ Ri�Rjffiffiffiffiffiffiffi
5�6

6�17

p p aNM
aHM

kðk�1Þ
2 �iþ1

aSH
ti

1 LS LPSVR & FFNN 1:61�3:91
0:2941 ¼ �7:8005 6:9356� 10�154 0:0050 0:0050 0:0050

2 LS LPSVR & LSSVM 1:61�3:85
0:2941 ¼ �7:6005 3:7497� 10�146 0:0050 0:0056 0:0083

3 LS LPSVR & IncSVM 1:61�3:82
0:2941 ¼ �7:5005 2:3182� 10�142 0:0050 0:0063 0:0083

4 LS SVM & FFNN 1:79�3:91
0:2941 ¼ �7:2084 1:4175� 10�131 0:0050 0:0071 0:0083

5 LS SVM & LSSVM 1:79�3:85
0:2941 ¼ �7:0044 2:6951� 10�124 0:0050 0:0083 0:0083

6 LS SVM & IncSVM 1:79�3:82
0:2941 ¼ �6:9024 9:8114� 10�121 0:0050 0:0100 0:0083

7 LS SVM & LS LPSVR 1:79�1:61
0:2941 ¼ 0:6120 0:0458 0:0050 0:0125 0:0083

8 IncSCM & FFNN 3:82�3:91
0:2941 ¼ �0:3060 0:2322 0:0050 0:0167 0:0167

9 LSSVM & FFNN 3:85�3:91
0:2941 ¼ �0:2040 0:3136 0:0050 0:0250 0:0250

10 IncSVM & LSSVM 3:82�3:85
0:2941 ¼ �0:1020 0:3757 0:0050 0:0500 0:0500

448 P. Rivas-Perea, J. Cota-Ruiz / Pattern Recognition Letters 34 (2013) 439–451
estimated the statistical significance of the experiments; first,
using the data in Table 2, Friedman’s test determined that the re-
sults are statistically significant with p ¼ 8:0614� 10�10 rejecting
the null-hypothesis; second, Friedman’s test over the data shown
in Table 3 and 4 combined also determined statistical significance
with p ¼ 3:4845� 10�10 rejecting the null-hypothesis as well. The
null-hypothesis being tested here is that the different approaches,
presented in the comparison, perform the same and that their per-
formance differences are random. Then, since the null hypothesis
was rejected it follows to perform the post hoc Nemenyi’s test
(Nemenyi, 1963), the Holm’s procedure, and finally the Shaffer’s
procedure (see (Demšar, 2006 and Garcıa and Herrera, 2008) for
complete details of how to perform these tests). In the case of
the Nemenyi test for the data in Table 2, the critical difference
(CD), corresponds to CD ¼ 2:728

ffiffiffiffiffiffiffiffi
5�6

6�17

q
¼ 1:48 for a significance le-

vel of a ¼ 0:05; then, if the pairwise difference between classifiers
rank is greater than the CD, the difference is considered significant.
Table 6
Mean Absolute Error. LS SVR = Large-Scale SVRCollobert and Bengio, 2001; LS LPSVR = Large
2009; FFNN = FeedForward Neural Network.

Dataset Classifiers

LS SVR LS LPSVR

Mean absolute error
NEPOOL (MWh) 491:38 (4) 238:69
MODIS A (Prob.) 0:2093 (2) 0:1705
MODIS B (Prob.) 0:1322 (2) 0:0896
f ðxÞ ¼ sincðxÞ 0:000938 (2.5) 0:000938
f ðxÞ ¼ sincðxÞ � p 0:093108 (3) 0:091457

Avg. (2.7)
Clearly, there are significant differences between the large-scale-
based classifiers (i.e., LS SVM and LS LPSVR) and the rest; the same
conclusion can be drawn from Table 3 and 4. This difference is evi-
dently the result of the inability of the classifiers not being able to
complete the training phase and produce a result; however,
comparing only the first two classifiers, the CD would change to
CD ¼ 1:960

ffiffiffiffiffiffiffiffi
2�3

6�17

q
¼ 0:48, and thus it can be concluded that there

is no significant difference between the two classifiers since the
difference between the two ranks is 1:79� 1:61 ¼ 0:18 < 0:48.
For the Nemenyi’s test, the p value for each pairwise comparison
is compared with an adjusted value of significance of 0:005 as
shown in Table 5. If p < 0:005 for a particular comparison, then,
the hypothesis is rejected; as can be seen from Table 5, the null
hypothesis is accepted for the LS SVM and LS LPSVR methods. Thus,
it is appropriate to proceed with the more refined Holm’s and Shaf-
fer’s procedures to confirm this conclusion. As can be seen from
Table 5, every null hypothesis is rejected until we compare the
-Scale LPSVR (proposed); B.Dec.Trees = Bagged Decision (Regression) TreesCutler et al.,

B. Dec. Trees FFNN

(1) 330:08 (3) 243:18 (2)
(1) 0:4745 (4) 0:2336 (3)
(1) 0:3221 (4) 0:1588 (3)
(2.5) 0:000948 (4) 0:000808 (1)
(1) 0:093721 (4) 0:092401 (2)

(1.3) (3.8) (2.2)



Table 7
MAE analysis using Nemenyi’s test, Holm’s and Shaffer’s procedures. Here Ri denotes the rank of the i-th approach, the level of significance is a ¼ 0:05; k is the number of
approaches, and ti is the maximum number of hypotheses that can be true given that ði� 1Þ hypotheses are false. The modified a value for the Nemenyi’s test, Holm’s and Shaffer’s
procedures is represented as aNM ;aHM , and aSH respectively.

i Approaches compared z ¼ Ri�Rjffiffiffiffiffi
4�5
6�5

p p aNM
aHM

kðk�1Þ
2 �iþ1

aSH
ti

1 LS LPSVR & B. Dec. Trees 1:3�3:8
0:8165 ¼ �3:0618 0:0037 0:0050 0:0083 0:0083

2 B. Dec. Trees & FFNN 3:8�2:2
0:8165 ¼ 1:9596 0:0585 0:0050 0:0100 0:0083

3 LS SVR & LS LPSVR 2:7�1:3
0:8165 ¼ 1:7146 0:0917 0:0050 0:0125 0:0125

4 LS SVR & B. Dec. Trees 2:7�3:8
0:8165 ¼ �1:3472 0:1610 0:0050 0:0167 0:0167

5 LS LPSVR & FFNN 1:3�2:2
0:8165 ¼ �1:1023 0:2173 0:0050 0:0250 0:0250

6 LS SVR & FFNN 2:7�2:2
0:8165 ¼ 0:6124 0:3307 0:0050 0:0500 0:0500
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LS SVM and LS LPSVR methods; this suggests that the proposed ap-
proach performs significantly different (better in this case) than all
the others, except for the LS SVM method. The same occur for the
data in Table 3 and 4.
5.2. Regression

Note that Table 2–5 refer exclusively to classification problems.
For regression cases, Table 6 is presented, which shows a compar-
ison of the mean absolute testing error among neural, binary, and
SVM-based learning methods. The table elucidates the idea that
the proposed scheme produces results comparable to other SV-
based approaches. The proposed model shows smaller errors even
when compared with the neural network-based approach at a
large-scale. The rank is also shown in Table 6; the ranking indicates
that the proposed approach performs better in the average case,
obtaining the highest ranking. The critical difference for this case

corresponds to CD ¼ 2:569
ffiffiffiffiffiffiffi
4�5
6�5

q
¼ 2:0976. Therefore, we can con-

clude that there is no significant difference between all methods
except between the proposed approach and the Binary Decision
Trees for Regression (BDTR); in that case, the null hypothesis is re-
jected. However, considering only two methods, i.e., the proposed
LS LPSVR and the LS SVR, which would be direct competitors, the

CD would be CD ¼ 1:960
ffiffiffiffiffiffiffi
2�3
6�5

q
¼ 0:8765; and using this CD, the null

hypothesis can be rejected.
Proceeding with the Nemenyi’s test, Holm’s and Shaffer’s proce-

dures, it can be concluded that in general the null hypothesis is re-
jected for the proposed approach when compared with the BDTR,
as shown in Table 7. In all the other cases, the null hypothesis is
accepted and no significant difference can be appreciated in terms
of these procedures. The reader should be reminded at this point,
that the objective of this research is not to provide with a method
that performs better than the others, instead, the objective here is
to provide with an alternative method that makes large-scale
training computationally tractable without loosing generalization
capabilities, e.g., sacrificing performance. Therefore, according to
the results shown here, this research seems to accomplish the pro-
posed objective. This can be confirmed using more and different er-
ror/performance metrics and datasets. In this regard, the author
want to point out that the proposed LP-SVR model with the
large-scale training strategy introduced here was also evaluated
using other performance metrics, such as (i) TP rate, (ii) FP rate,
(iii) accuracy, (iv) specificity, (v) positive predictive value, (vi) neg-
ative predictive value, (vii) false discovery rate, (viii) Matthews
correlation coefficient, (ix) F1-score, (x) estimate of scaled error
rate, (xi) root mean squared error, (xii) normalized root mean
squared error, and (xiii) area under the receiver operating charac-
teristics curve. Nonetheless, the results lead to the same conclu-
sions as those tables shown in this article; however, all this
results will be included in a follow-up article that will include
more experiments and other theoretical developments that space
constraints preclude us to address in this paper.

6. Conclusion

6.1. Large-Scale learning

The proposed large-scale model involved three major parts that
increases computational tractability of large-scale problems. First,
the Large-Scale LP-SVR problem is reduced by variable decomposi-
tion a.k.a. column/variable chunking which exploits LP-SVR
structure to produce a lower-dimensional representation of the
decomposed LP sub-problem. The proof of finite termination of
the decomposition strategy is guaranteed by an infinite-loop pre-
vention algorithm and by previous work from Torii, et al. in (Torii
and Abe, 2009).

Second, the authors take a constraint decomposition strategy
a.k.a. row/constraint chunking that generates a number of smaller
sub-problems by exploiting again LP-SVR structure. The resulting
LP problems are solved sequentially in a monotonically non-
increasing objective function fashion. Proof of convergence is given
applying Bradley’s (Bradley et al., 2002) theorems under the cor-
rect assumptions.

Third, the two-way-reduced LP-SVR sub-problems are solved
using interior point methods, which have a very high rate of con-
vergence. This is the key that balances the total computational
time of performing two decompositions and solving several LPs.
Using other approaches (e.g. the simplex method) would dramati-
cally increase computational efforts.

6.2. Model performance and sparseness

Finally, from the experimental results shown in this research
we can conclude that the proposed approach is comparable with
other formulations in terms of performance, which is desirable.
However, in this work the authors are not looking for better perfor-
mances, instead, it is desired to train large-scale data sets and at
the same time produce sparser solutions in terms of the number
of Support Vectors. As is known, if the solution is sparser, the mod-
el is more efficient in the testing phase. That is, a sparse solution
implies fewer number of Support Vectors and hence, future kernel
evaluations can be made faster. The point here is that it was dem-
onstrated that the proposed model provides sparse solutions; this
was achieved by extending the research by Zhang and Zhou (2010),
to our LP-SVR problem formulation. Future work includes experi-
mental demonstration that as the problem size increases, the
sparser the solution becomes.
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