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Abstract—Retinoblastoma is a pediatric ocular cancer typi-
cally indicated by leukocoria (white-eye pupillary reflex). Early
detection of leukocoria can improve health outcomes when
it indicates disease, and it can be easily seen in recreational
photographs. As part of a system for automatic leukocoria de-
tection, we propose an image processing algorithm for detecting
the exact location and radius of the smallest circle containing
the iris in an eye image. Our algorithms use both median filters
and two-dimensional stationary wavelet transforms and achieve
low error rates.
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I. INTRODUCTION

Leukocoria is a white pupillary reflex defined as abnormal
reflection of light in the retina of the eye [1]. It is similar,
in appearance, to the reflection observed in creatures that
have a tapetum lucidum, e.g., cats, dogs, and raccoons.
The human eye does not have a tapetum lucidum, and if
leukocoria is observed in the human eye this is typically
interpreted as a negative event. Leukocoria often indicates
medical conditions that include, but are not limited to,
retinoblastoma, Coats disease, congenital cataract, corneal
scarring, among several others [2]. Retinoblastoma is a
pediatric ocular cancer that can be life-threatening if not
treated in a timely manner.

Leukocoria is detectable using a conventional camera with
a flash. In a photograph, the healthy human eye should
appear to have a strong red reflection or no reflection at
all. However, the leukocoric eye appears with a white or
orange colored reflection [3]. An ophthalmologist typically
uses medical instrumentation to confirm the existence of
leukocoria. Despite of the simplicity of leukocoria detection,
there are no automated detection systems that operate on
conventional digital photographs. Such a system needs to
locate faces, eyes, and even pupils within an arbitrary image.

This paper proposes an image processing and analysis
algorithm to identify the exact center and radius of the
smallest circle containing the iris within the image of an
eye for further analysis. The image processing involves
denoising the input image to produce an image that is better
suited for edge detection over relatively large regions with
respect to the input size. The first image processing strategy

is a median filter that is proportional to the size of the input
image. The second strategy is a two-dimensional discrete
stationary wavelet (2D SWT) approach for denoising of the
input image. The latter strategy has been successfully used
in denoising images with high signal to noise ratio [4]. The
proposed algorithm proceeds to find the smallest circle that
contains the iris in the enhanced image using the Hough
transform (HT) for circles. This transformation makes use
of an edge image and creates a set of matrices containing
the votes for particular circle sizes centered at specific image
locations [5]. The HT has been widely used in the problem
of circle detection [6], but not specifically in the application
presented in this paper.

II. DATASETS AND IMAGE PRE-PROCESSING

This research uses ten different groups of images totaling
704 color images. Six groups contain 70 images each, while
the remaining four groups have 71 images each. The groups
were created in this manner to ease the estimation of a K-
fold-based cross-validation error. All images are squared,
varying their size from 19 × 19 to 138 × 138 pixels. Most
images are not centered with respect to the iris, but some
may be unintentionally close to the center. Orientation of
the images also varies and the eye may not contain a perfect
circle for the cases when the picture is captured in angle with
respect to the camera sensor. The eye is usually not entirely
open causing incomplete iris circles. The color of the eye and
the texture and color of the skin also vary. All images were
extracted from recreational photographs, thus, many lack
proper illumination, resolution, and quality. Consider Figure
1 which shows representative examples of the images that
conform the datasets. Such images are labeled and manually
tagged with the exact center (c1, c2) and radius r of the
smallest circle that contains the iris of the image, where
c1 ∈ {0, 1, . . . ,M − 1} and c2 ∈ {0, 1, . . . , N − 1} for an
M×N image. This information is used to compute the error
in the detection methods.

Evidently, recreational photography produces digital im-
ages that are likely to have no control over the illumination
of the scene. Usually, the camera flash produces uneven
illumination and color artifacts inside the eye. But more
importantly, the different skin colors may introduce un-
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Figure 1. Sample images of the image datasets used in this research.
Images vary in size, orientation, skin color, iris color, and angle of the eye
with respect to the camera.

wanted information into the classification system. In order
to avoid costly skin-detection algorithms that could be used
to remove (ignore) skin regions, we simply equalize the
histogram of the cropped eye image at each channel. This
equalization of channel histogram alleviates the necessity of
evening the image and reduces the effects of skin color in the
eye image. Nonetheless, the equalization of the histograms
needs to be performed after a process of denoising. In this
manner, there will be more benefit from the equalization pro-
cess. The two denoising methodologies used are explained
in the next section.

III. IMAGE ANALYSIS

Part of the issues in amateur photography is the increase of
noise in proportion to the lack of illumination. Furthermore,
since we are interested only in the center of the eye, i.e.,
in detecting the circular region containing the iris, we can
perform noise-reduction up to the point in which the region
containing the iris is still clearly delimited. In this research
we use two approaches that reduce the noise in the image
and preserve the limits of the region of interest. These are
briefly explained next.

A. Median filtering

A 2D median filter is widely used in the image processing
community because it preserves edges and removes speckle
noise fairly well. An M ×N input image I(n1, n2), where
n1 ∈ {0, 1, . . . ,M − 1} and n2 ∈ {0, 1, . . . , N − 1}, can
be filtered considering an p × q neighborhood, where the
neighborhood is usually 1 ≤ p�M and 1 ≤ q � N . Every
pixel considered as being filtered observes its neighbors and
replaces itself with the median value of its neighborhood.

In this research, we propose a square filter whose size is
dependent on the image size in an quadratic relationship.
The proposed p × p filter can be used obtaining its size as
follows:

p =
⌈√

max(M,N)
⌉
. (1)

After the estimation of the filter size we proceed to apply
the p × p median filter to the three (i.e., RGB) channels

a b c d e

Figure 3. SWT-based edge detection. In (a), the input image, (b) depicts
the horizontal detail, (c) depicts the vertical detail, (d) is the combination
of horizontal and vertical detail, and (e) is the thresholded version of (d).

of the original input image. Then, it follows to perform a
histogram equalization. This is exemplified in the first three
rows of Figure 2, i.e., the upper half portion.

Using the filtered and equalized image we approximate
the derivative of the image using “Sobel” for the red channel
image and “Prewitt” for the green and blue channel images
respectively. Then the image is binarized to analyze the
edges. The selection of the best derivative approximation
methods was determined experimentally.

B. Wavelet-based filtering

Similarly, this research filters the input RGB image with
purposes of denoising using a 2D discrete stationary wavelet
transform (SWT) at two decomposition levels, L = 2. Essen-
tially, SWTs are non-decimated discrete wavelet transforms
(DWTs) which preserve the original size of the image [4].
In this implementation of SWTs we use “haar” wavelets as
they demonstrated to be better in preliminary experiments.
An SWT can be calculated faster if we resize the image
such that its size is a factor of 2L. Thus, we can calculate
the new size as follows:{

M̂, N̂
}
=

{⌈
M

2L

⌉
× 2L,

⌈
N

2L

⌉
× 2L

}
, (2)

where M̂ ≥ M and N̂ ≥ N denote the new size of
an M̂ × N̂ image. The image is resized using bicubic
interpolation. The parameters required for the thresholding
of the SWT coefficients are estimated with the traditional
method of Donoho [7]. The denoised image is then equalized
as described in Section II.

Using the denoised and equalized image, we exploit
the SWT one more time in order to approximate the first
derivative of the image for edge-detection purposes. In this
case the SWT is applied at one single decomposition level,
L = 1, using a “haar” wavelet. The “horizontal” and
“vertical” details are combined to produce the derivative
approximation. Figure 3 exemplifies the process of having
a denoised equalized image (a), and its SWT horizontal
detail (b) and its vertical detail (c); the combination of
both horizontal and vertical, (d), is an approximation to the
first derivative. Finally the combined detail is thresholded to
produce a binary image with edges, (e). After this, the edge
image is resized back to its original M ×N size.
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Figure 2. Two methodologies for detecting the iris as region of interest. The upper half implements a median filter whose size depends on the input
image. The lower half convolves stationary wavelets to denoise the input images. After denoising, both are processed to equalize their histogram for better
edge detection followed by the Hough transform whose accumulator matrix is used to select a center candidate.

C. Hough transform

After edge-detection, we use the Hough transform for
circles to recognize the likelihood of an image to contain
a circle centered in c1, c2 with radius r, where c1 ∈
{0, 1, . . . ,M − 1} and c2 ∈ {0, 1, . . . , N − 1}. The Hough
transform for circles requires an accumulator matrix for each
r that is attempted. The accumulator matrix, A(n1, n2), has
the same size of the input image, M × N , where each
element in the matrix contains the number of “votes” for the
hypothesis that in that position exists a circle of radius r. Let
us consider the position A(n1, n2) and radius r; the Hough
transform will understand {n1, n2} as the center {c1, c2}
with radius r and will add all a1, a2 values that satisfy the
circle equation r2 = (a1 − c1)2 + (a2 − c2)2, and will set
that value in the position A(n1, n2) the process is repeated
for every single element in A. At the end, the accumulator
matrix A will represent the likelihood of having a circle of
radius r at any position in the image.

Since we are interested in the region delimited by the
iris, we limited the radius search to the following monotonic
sequence:

r ∈
{
1, 2, . . . ,

⌊
max(M,N)

2

⌋}
. (3)

In this manner, the radius search space is constrained to
search for circles of at most the size of the image. There
will be a number of

⌊
max(M,N)

2

⌋
accumulator matrices. The

maximum value of each accumulator represents the best
chance that a circle exists at that position for that radius.
Nonetheless, if we average all accumulator matrices into

one matrix, Â(n1, n2), this new accumulator matrix will
contain a better representation of the likelihood of circles.
The process of averaging reduces the effect of unwanted
center candidates, e.g., circle candidates that only occur once
in a while, and preserves “good” candidates, e.g., concentric
circles and circles that are frequently receiving high number
of votes at different (and usually subsequent) radii. This
process is exemplified in Figure 2.

The matrix Â, if properly normalized, can be understood
as a 2D probability density function (PDF). Such PDF can
help us rank the positions according to their likelihood to
contain a circle. Thus, we followed to use this approximate
PDF to rank all the accumulator matrices, A, for the
different radii. From all the ranked accumulator matrices we
select the position with the highest value, storing its position
c1, c2 and its corresponding radius r. Every single channel
will provide its own center candidate, which allows us to
propose a fourth candidate based on the average position
and radius of all three (RGB) center candidates. This is also
exemplified in Figure 2 with connectors (A) and (B). In fact
we observed that, in some cases, these candidates, produced
by averaging the other three candidates, might be better
solutions than individual channel solutions; this is discussed
in the next section.

IV. EXPERIMENTS AND RESULTS

We performed experiments using the datasets described in
Section II. The experiments consist of taking an input image
and process it to obtain its center candidates, {ĉ1, ĉ2, r̂}, as
exemplified in Figure 2. Every input image will produce
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Table I
CROSSVALIDATION ERROR RATE ANALYSIS WITH RESPECT TO THE ESTIMATED CENTER AND RADIUS

Median-based Wavelet-based
Error R G B Comb. R G B Comb.

Average εc 0.0472 0.0567 0.0630 0.0476 0.0522 0.0554 0.0606 0.0507
Average εr 0.2441 0.2387 0.2532 0.2149 0.3747 0.3916 0.3740 0.3243

eight outputs: the first four correspond the median-based
approach, i.e., R,G,B, and the combined result; and the last
four correspond to the wavelet-based approach, respectively.
Each output, is compared to the target value in two different
ways; one is based on the center and the other based on the
radius; both are shown in Table I and explained next.

The first comparison is based on the distance from the
target (its true center) to its calculated center. The measure
for comparison is the weighted Euclidean distance given by

εc =

√
(c1 − ĉ1)2 + (c2 − ĉ2)2√
(M − r)2 + (N − r)2

, (4)

where the denominator accounts for the worst possible
scenario, i.e., the largest possible error. In this manner we
can make a fair comparison of all errors independently of
the input size. The range of εc is in [0, 1]. The first row in
Table I shows the cross-validation error for εc; the table also
shows in bold font the lowest errors for both approaches.
Notice how the red channel, in average, produces the lowest
error rate with 0.0472 (which is a 4.72% error); however,
note that the error of the three channels combined for the
median-filtering approach is also very low 0.0476. The
Friedman’s test was applied rejecting the null-hypothesis
(that all methodologies perform the same), and confirming
that the study is statistically significant with p < 0.1×10−5.

A second comparison measures the level of overlap be-
tween the true circle of radius r and the estimated circle of
radius r̂. The area of the intersection, T , between two circles
can be easily estimated under the following considerations:
a) If the target circle and the estimated circle do not overlap,
then T = 0; b) if both circles fully overlap, then the
overlap area is computed as T = πmin(r, r̂)2; and c) if
both circles partially overlap, then the intersection area is
computed and assigned to T . Thus, the radius error based
on the intersection intersection can be estimated as follows:

εr = 1− T

πr2
(5)

where the denominator describes the maximum possible
intersection area, which is the area of the true circle. The
range of εr is between [0, 1]. The second row of Table
I presents the crossvalidation error for εr, based on the
above criteria. Clearly, the combined approach using median
filtering exhibits the lowest average error and it is the best
ranked methodology overall. The Friedman’s test shows that
the study is statistically significant with p < 0.00001×10−5,
rejecting the null hypothesis.

V. CONCLUSION

This research introduces two approaches for finding the
smallest circle containing the iris: a median filter-based
approach and a wavelet approach in conjunction with the
Hough transform. From the experiments we observed that
the median filter approach produces similar results than the
wavelet-based approach in finding the coordinates of the
center of the true circle; however, the median-filter approach
seems more robust in finding a better radius. Nonetheless,
both methodologies present novel alternatives towards an
automatic system for detecting leukocoria in infants with
retinoblastoma. This research also presents an alternative
image analysis approach in the denoised wavelet domain
aiming to find a circular shape. Further studies will analyze
the Hough transform for elipses.
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