
1 23

����	�
����

����	�

�����
�����
��
	�����
�������	������
�
������	
	�	���
�
�
����������������
����������
�������������� �!"��� ���# �$

������	�
����
�
��
����

����
	��
����

����
�����������������
�������
�
�

�
��	��

����	�
���
��������������	���
�����
�	
��������	�
	
���

ORIGINAL ARTICLE

A nonlinear least squares quasi-Newton strategy for LP-SVR
hyper-parameters selection

Pablo Rivas-Perea • Juan Cota-Ruiz •

Jose-Gerardo Rosiles

Received: 7 December 2011 / Accepted: 29 December 2012
! Springer-Verlag Berlin Heidelberg 2013

Abstract This paper studies the problem of hyper-
parameters selection for a linear programming-based

support vector machine for regression (LP-SVR). The

proposed model is a generalized method that minimizes a
linear-least squares problem using a globalization strategy,

inexact computation of first order information, and an

existing analytical method for estimating the initial point in
the hyper-parameters space. The minimization problem

consists of finding the set of hyper-parameters that mini-

mizes any generalization error function for different
problems. Particularly, this research explores the case of

two-class, multi-class, and regression problems. Simulation

results among standard data sets suggest that the algorithm
achieves statistically insignificant variability when mea-

suring the residual error; and when compared to other

methods for hyper-parameters search, the proposed method

produces the lowest root mean squared error in most cases.
Experimental analysis suggests that the proposed approach

is better suited for large-scale applications for the particular

case of an LP-SVR. Moreover, due to its mathematical
formulation, the proposed method can be extended in order

to estimate any number of hyper-parameters.

Keywords Support vector regression !Hyper-parameters !
Large-scale LP-SVR

1 Introduction

Support vector machines (SVMs) are considered part of the

supervised learning methods [19]. In general, SVMs take a

given data set, T ¼ fxi; yigN
i¼1; consisting of N input pat-

terns, x 2 <M; and a desired output class value y 2 <; and
aims to find the minimum number of input patterns that are

relevant and necessary for solving a classification or

regression problem. Such reduced number of input patterns
are called ‘‘support vectors’’ [20, 62]. SVM-based learning

methods exhibit great generalization capabilities in both

classification and regression problems [42, 62]. SVMs
possess the highest performance rankings in many different

machine learning problems and applications in cybernetics

[30, 36, 57, 65, 69, 71]. However, SVM-based methods’
robustness dramatically depends on the the set of param-

eters necessary for its implementation [45]. This set of

parameters are known as ‘‘hyper-parameters’’, hereafter
denoted as h [59]. Both original models for SVMs and

support vector machines for regression (SVRs) take the
data available to construct an SVM/SVR model and project

it into a higher-dimensional space using a kernel function

that typically requires one hyper-parameter, h1 = c; during
the construction of the model, i.e., training of an

This work was supported in part by NASA Goddard Space Flight
Center’s GSSP 2009 program and by the National Council for Science
and Technology (CONACyT), Mexico, under Grant 193324/303732.

P. Rivas-Perea (&)
Department of Computer Science, Baylor University,
One Bear Place #97356, Waco, TX 76798-7356, USA
e-mail: Pablo_Rivas_Perea@Baylor.edu
URL: http://baylor.academia.edu/prp

J. Cota-Ruiz
Department of Electrical and Computer Engineering,
Autonomous University of Ciudad Juarez (UACJ),
Ave. del Charro #450 Nte. C. P. 32310,
Ciudad Juarez, Chihuahua, México
e-mail: jcota@uacj.mx

J.-G. Rosiles
Science Applications International Corp., 7400 Viscount Blvd,
El Paso, TX 79925, USA
e-mail: gerardo_rosiles@yahoo.com

123

Int. J. Mach. Learn. & Cyber.

DOI 10.1007/s13042-013-0153-9

Author's personal copy

SVM/SVR, every classification or regression mistake is

penalized using a loss function that also requires a second
hyper-parameter, h2 ¼ !; and the third hyper-parameter is a

regularization parameter, h3 = C, which is applicable only

in soft-margin SVM formulations and it is necessary for the
regularization of the SVM/SVR optimization problem [54],

without regularization, an SVM would be incapable of

working with non-separable data. The number of hyper-
parameters depends directly from the type of SVM/SVR

model the researcher chooses [56]. Therefore, hyper-
parameters estimation is currently one of the general open

problems in SVM and SVR learning methods [27, 59].

Broadly speaking, one tries to find a set of n hyper-
parameters, h ¼ fh1; h2; . . .; hng; minimizing the general-

ization error of an SVM or SVR learning machine; the

generalization error is typically understood as the likeli-
hood of a learning machine to produce an error for any

given input [18]. Thus, it makes sense to find a set of

hyper-parameters that minimize the generalization error of
the learning machine; however, finding the true general-

ization error is not a trivial problem. In fact, Anguita et al.

[1], claim that ‘‘the estimation of the generalization error of
a learning machine is still the holy grail [sic] of the

research community‘‘. The previous statement implies it is

virtually impossible to find the true generalization error; at
best we only can attempt to find good estimates of it. And

this is important because if one can find a good general-

ization error estimate, then, perhaps, it could be feasible to
develop a method to find the set of hyper-parameters that

minimizes such generalization error estimate. However, a

similar problem exists with respect to the methods that try
to minimize the generalization error: they are either com-

putationally expensive but good in minimizing the error or

have faster convergence and poor minimization of the
generalization error. Consequently, it could be appropriate

to divide the problem of finding the hyper-parameters in

two parts: (i) finding a function that produces a ‘‘good’’
generalization error estimate, and (ii) finding a feasible

method to minimize that function. A brief discussion of

existing methods in both categories is introduced next.

1.1 On generalization error estimators

The most popular methods to estimate the true generaliza-

tion error include techniques ofK-fold cross validation [12],

leave-one-out cross validation [1], maximal discrepancy
[2], bootstrapping [22], and compression bound [1, 63].

Particularly, the compression bound provides an estimate of

the generalization error considering only those elements of
the data set that are not support vectors. That is, the authors

follow the well known concept of dividing the data set into a

training set T and a testing setD [19], where the training set
is used to teach (or train) the machine learning model, and

the testing set is used to analyze the final quality of the

trained model. Then, the authors use the ‘‘non-support
vectors’’ as testing set to provide estimates of the general-

ization error [1].

The maximal discrepancy method, in contrast, trains an
SVM model as normal, and then re-trains another model

but this time perturbing the ‘‘target’’ outputs to observe the

changes produced by both models. In fact, half of the target
output values are actually flipped. Then an estimate of the

bounds of the generalization error is given as a function of
the observed changes [2].

Bootstrapping consists of diving the training set T into a

new, smaller, training set and a validation set. The selec-
tion is performed based on the statistical properties of the

data; several groups can be formed and the data in each

group could be repeated several times as necessary [22].
An estimate of the generalization error is given by aver-

aging the error produced by the different realizations of the

method.
Similarly, the K-fold cross validation method divides

the training set into a given number of groups, jKj; of

(ideally) equal size. These groups are known as folds or
slices [19]. The learning machine is trained with all the

slices except for one of them, which is then used as a

validation set. The procedure is repeated for each group
and the results are averaged and given as an estimate of the

generalization error [12]. The leave-one-out (LOO) cross

validation method is the extreme case of a K-fold cross
validation, when the number of samples in the training set

is also the number of folds [1], i.e., jKj ¼ N:
The common drawback of most of these methods is that

they are problem dependent [6]. This statement is con-

firmed by Anguita et al. [1]; they performed a compre-

hensive study on the above techniques and ranked such
techniques according to their ability to estimate the true

generalization error. The result concluded that most of the

methods they evaluated either underestimate or overesti-
mate the true generalization error. Nonetheless, their

research suggests that the K-fold cross validation technique

is one of the less risky techniques for estimating the true
generalization error. Cawley’s research [6] also demon-

strates that LOO and K-fold cross validation methods work

much better than other methods. Furthermore, the research
of Smets et al. [58] on the different methods for estimating

the true generalization error also confirmed that a K-fold

cross validation provides a smoother surface for hyper-
parameters estimation, suggesting that gradient-based

methods could be safely applied, e.g., quasi-newton

methods [7]. Therefore, this research proposes the usage of
a K-fold cross validation technique to estimate the true test

generalization error along with a gradient-based method

that minimizes such an error. Current methods for mini-
mizing the generalization error are discussed next.

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

1.2 On methods that find a set of hyper-parameters

There are a number of existing methods to find a set of
hyper-parameters. These could be categorized in two main

groups: (i) methods that exploit well established optimi-

zation methods, and (ii) those who use heuristics approa-
ches to find a set of hyper-parameters. From the

optimization point of view, the solution to the problem of

finding the set of hyper-parameters is clearly non-trivial.
To illustrate this, Fig. 1 is presented.

The figure shows the root mean squared error (RMSE)

surface of a linear programming support vector machine
for regression (LP-SVR) as a function of its hyper-

parameters ½C; c$ ¼ h: Given that the problem is non-con-

vex, we can observe how the error surface is non-smooth
and has many local minima. Therefore, ‘‘smoother’’ error

functions ought to be considered as well as new approaches

for finding the global minimum or at least a ‘‘good’’ local
minimum. From such approaches is also desired a fast rate

of convergence.

The most popular approach for finding the hyper-
parameters is a heuristic called ‘‘grid search’’ which could

be thought as a ‘‘brute-force’’ method. It searches all over

the hyper-parameters space in equally spaced intervals in a
logarithmic or linear scale. When finished evaluating all

points in the grid, a new grid search can be employed to

refine the search for the best set of hyper-parameters. This
method is computationally intense and expensive, yet it is

still considered an alternative in some cases [45].

Another popular approach that uses a fast heuristic
approach to find a set of hyper-parameters is the one

introduced by Momma et al. [41]. The authors introduced

the ‘‘Pattern Search’’ method for SVR, showing that the
method could achieve fairly good, though not the best,

results in fewer number of function calls. The authors

propose an algorithm that starts from a randomly chosen
point, in the hyper-parameters space, evaluating its own

cost according to a quality function that depends on the

mean squared error and the variance of the error at that
point. The estimation of the error at any given point is based

on the LOO technique. The algorithm seeks to explore other
points in the hyper-parameters space guided by a fixed

pattern, typically corresponding to the surrounding neigh-

bors. In doing this, the algorithm avoids the estimation of a
gradient, thus, reducing the number function calls.

Later, Ito et al. [23] proposed a method that uses the

‘‘minimum cross validation’’ technique to determine the
direction of the hyper-parameters that produce a descent in

the mean squared error function using LOO. They claim

that their optimization method is faster than the traditional
grid search and that it also produces a lower mean squared

error with LOO than the grid search method. This dem-

onstrated that when optimization techniques are used,
lower errors can be achieved. However, the authors did not

provide any reference as to how the derivatives (in the

Hessian) are computed.
Cherkassky et al. [8] proposed a method to determine

the values for the hyper-parameters using solely the train-

ing set with no slices. The authors demonstrated that sta-
tistical properties of the training set provide sufficient

insight to produce an educated guess of a good set of

hyper-parameters. Their method is evidently less expensive
in terms of function calls, e.g., when compared to cross

validation-based techniques. However, it does not provide

the best set of hyper-parameters. Cherkassky’s method will
be revisited again in this document when describing the

proposed optimization algorithm.

Not much time after Cherkassky’s research, Kobayashi
et al. [32] improved Ito’s method [23]; the authors noticed

that the algorithm for estimating the hyper-parameters

introduced by Ito et al., could take advantage of the
properties of SVR itself, i.e., they realized that the elements

of the data-set that are not SVs could be discarded in the

computation of the derivatives. They started with a given
set of hyper-parameters and then solved the whole problem

with such, which helps in identifying the SVs. The ele-

ments that were not SVs were discarded in any subsequent
computation. Based on the same concept, they went further

and discarded more SVs while estimating the Hessian.

Although the total CPU time was reduced, in comparison
with Ito’s original work, no insight was given as to how the

initial hyper-parameters were determined; the computa-

tional cost of the Hessian and any information concerning
the computation of the Hessian was very obscure.

Fig. 1 Response of the root mean squared error as a function of
h ¼ ½C; c$ using the Bodyfat data set [48]. Note the non-smooth
surface error, and how it has at least two valleys with many possible

local minima. Here C is evaluated over the interval ½100; . . .; 1010$ and

c is evaluated over the interval ½100; . . .; 105$:

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

Karasuyama et al. [26] noticed the problems in the

models of Kobayashi et al. [32] and of Ito et al. [23].
The authors realized that at the moment of inverting the

Hessian matrix, their inverse estimation algorithm yielded

inconsistencies. Then they proposed a different method
for estimating the gradient, which the authors claimed

was free of inconsistencies, i.e., it had guaranteed non-

singularity. The authors claim that this new method
reduces the CPU time of previous versions by more than

one half. However, their method has contradictory find-
ings to that of Cherkassky et al. [8], who demonstrated

that when ! ¼ 0 (a loss function hyper-parameter), it falls

in the case of the ‘‘least-module’’, where all data-points
are SVs. Therefore, the computation time should be

increasing as Karasuyama’s algorithm reaches ! ¼ 0:
Furthermore, the author compares his results to that of an
‘1-SVR, which is known to be more efficient [70], and

provides no insight regarding what parameters where

used in this kind of SVR.
Later, Karasuyama et al. [27] improved his own

method by implementing a technique called ‘‘accurate

online’’-SVR (or AOSVR) [38]. Such method reduces the
SVR solution time by removing samples from the train-

ing data, solving, and then observing the behavior of the

SVR after removal. Depending of what the relevancy of
the data was, it could be either removed from the training

set or preserved for further function calls. The authors

claim that this procedure accelerates their own previ-
ously revised model [26], without loosing generalization

capabilities.

Ortiz-Garcı́a et al. [45] have recently proposed upper
bounds for the hyper-parameters with the purpose of

reducing the search space and consequently reducing the

total estimation time. The authors studied the relationship
and relevancy of the hyper-parameters of an SVR and

demonstrated that the proposed boundaries can be estimated

only from training data, which is similar to Cherkassky’s
approach [8].

Other researchers have also studied the SVM/SVR

hyper-parameters estimation problem from other perspec-
tives. For instance, Yuan et al. [66] presented a method

based on chaos optimization theory, and Ren et al. [51]

used Genetic Algorithms and Particle Swarm optimization
to obtain a good set of hyper-parameters. However, the

methodology particularly proposed by Ren et al. seems to

contradict the findings of Smets et al. [58] in the sense that
Ren claims the surface of a K-fold cross validation does

not provide a smooth surface; however, Smets provides

with more experiments and a more sound theoretical
background to support his claim, while Ren falls short in

this sense. Even Duan’s research [12] demonstrates that

K-fold cross validation is one of the best generalization

error estimators; this situation suggests a lack of agreement

among researchers.
The methods briefly discussed above show the variety

of heuristic and optimization-based approaches for

hyper-parameters estimations. Some findings seem to
contradict others and no agreement has been achieved

thus far [45]. Perhaps one can argue that such differ-

ences rely on the fact that those methods use different
SVR/SVM models, with different error functions,

and with different generalization error estimators. For
example, Cherkassky et al. [8], Momma et al. [41],

Ortiz-Garcı́a et al. [45], and Ren et al. [51] use the

standard SVR with an !-insensitive loss function; while
Ito et al. [23], Karasuyama et al. [26], Kobayashi et al.

[32], and Smets et al. [58] use the standard SVR but

with a quadratic !-insensitive loss function; and Cawley
[6] uses a least squares SVM (LS-SVM).

The lack of agreement cries out for more research in

this field and demands the exploration of different SVR
models and methodologies apart from the ones discussed

above. Therefore, the aim of this research is to provide a

different perspective to the problem of hyper-parameters
estimation. This research explores the usage of a quasi-

Newton-based nonlinear least squares method to mini-

mize the generalization error estimated with a K-fold
cross validation method, thus, providing a novel alter-

native to the problem of finding the hyper-parameters.

Furthermore, this research explores an LP-SVR formu-
lation that was originally introduced in [54] and that has

not been reported in the literature to the best of the

authors knowledge.
This document is organized as follows: Sect. 2 defines

and discusses a general nonlinear least squares method

that uses a set of individual error functions to minimize
the overall generalization error of any machine learning

problem. Section 3 introduces the LP-SVR formulation

that is used in this research, which requires a particular
number of hyper-parameters; such hyper-parameters are

addressed in Sect. 4 along with specific error functions

chosen to solve the optimization problem. Section 5
discusses the implementation details and other consid-

erations applicable to the proposed method. The experi-

mental results are discussed in Sect. 6, and conclusions
are drawn in Sect. 7.

2 Error function minimization using nonlinear least
squares

Let rðhjT Þ; r : <n 7!< be a real function representing some

estimate of error; where h 2 <n is a vector of parameters,

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

and T ¼ fxi; yigN
i¼1 defines a training set given by N

samples of the M-dimensional data vector x 2 <M , and a
desired output class value y 2 <. Then, let R : <n 7!<m be

denoted as

RðhjT Þ ¼

r1ðhjT Þ
r2ðhjT Þ
..
.

rmðhjT Þ

2

6664

3

7775

m'1

: ð1Þ

The vector RðhjT Þ represents m different measures of error

provided a vector of hyper-parameters h ¼ ½h1; h2; . . .; hn$,
and training data T . This research aims to minimize

RðhjT Þ, which reduces the ‘‘residual error’’. Here, the term

‘‘generalization error’’ is equivalent to the term ‘‘residual
error’’; however, the latter term is used following the

standard optimization terminology [11]. Indeed, this

particular kind of minimization problems are known as
‘‘nonlinear least squares problems’’ [11, 44]; and following

the nonlinear least squares model, let f ðhjT Þ denote the

following function:

f ðhjT Þ ¼ 1

2
jjRðhjT Þjj22; ð2Þ

where jj ! jj2 denotes the ‘2-norm (a.k.a. euclidean norm).

Then, since f : <n 7!<, then its derivatives can be

expressed in terms of the Jacobian given by

Jf ðhjT Þ ¼
orj

ohijT

! "

1; 2; . . .;m

1; 2; . . .; n

¼ ! ! !

rr1ðhjT ÞT

rr2ðhjT ÞT

..

.

rrnðhjT ÞT

2

666664

3

777775

n'n

;

ð3Þ

where rrnðhjT Þ denotes the gradient of the n-th function,
given by

rrnðhjT ÞT ¼ orn
oh1

orn
oh2

! ! ! orn
ohn

h i

1'n
: ð4Þ

Therefore, the gradient rf ðhjT Þ and Hessianr2f ðhjT Þ are

defined as follows:

rf ðhjT Þ ¼ Jf ðhjT ÞTRðhjT Þ; ð5Þ

r2f ðhjT Þ ¼ Jf ðhjT ÞTJf ðhjT Þ þ ZðhjT Þ; ð6Þ

where ZðhjT Þ ¼
Pm

j¼1 rjðhjT Þr2rjðhjT Þ.
The solution to the problem, indicated with a star (H), is

the vector of parameters hH which, given a training set T ,

produces minimal error functions, i.e., f ðhHjT Þ is mini-

mum; then Newton’s method can be used since f ðhHjT Þ is

continuously differentiable on <n.

The method of Newton is well known from basic cal-
culus and optimization courses [11], and it appears sum-

marized in Algorithm 1.

The method of Newton updates the value of a given
variable, hjT , according to the direction and magnitude of

the derivative of the function that characterizes such vari-

able, f ðhjT Þ. The idea of using derivatives greatly rewar-
ded the method with a fast rate of convergence. More

precisely, Newton’s method is known because it has a

q-quadratic rate of convergence, finding a solution hHjT in

very few iterations, minimizing f ðhHjT Þ, if such a solution

exists.

This method is also known for one of its main disad-
vantages: it is a local method. Therefore, one needs to have

in advance a vector of parameters h0jT that is close to an

acceptable solution; otherwise the Newton step DhtjT ,
though in the correct descent direction, could be very large

and move far away from the solution. To overcome this

difficulty one needs to consider using a globalization
strategy, also known as ‘‘line search’’. For the proposed

model, the globalization strategy could use the following

merit function:

Mf ðhjT Þ ¼
1

2
jjRðhjT Þjj22: ð10Þ

Then, using the merit function (10) one can define the
following property which establishes that there is a descent

direction for the proposed function minimization problem.

Property 1 DhjT is a descent direction for Mf ðhjT Þ.
That is, DhjT) 0 in the system given by

rMf ðhjT ÞTDhjT ¼ *Mf ðhjT Þ: ð11Þ

Proof LetrMf ðhjT Þ be the gradient of the merit function

(10) denoted as:

rMf ðhjT Þ ¼
1

2
Jf ðhjT ÞTRðhjT Þ: ð12Þ

Then, substituting (10) and (12) into (11) results in

1

2
RðhjT ÞTJf ðhjT ÞDhjT ¼ * 1

2
jjRðhjT Þjj22; ð13Þ

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

which making use of algebraic operations reduces to

DhjT ¼ * Jf ðhjT Þ
$*1

RðhjT Þ) 0: ð14Þ

Hence, DhjT) 0.

The next step is to establish a globalization strategy.

Since the merit function (10) is a valid function that

guarantees a descent at every iterate, the globalization
strategy can be defined by the following property.

Property 2 If DhjT is a descent direction of Mf ðhjT Þ,
then, there exists an b1 2 ð0; 1$ such that

Mf ðhjT þ b1DhjT Þ)Mf ðhjT Þ þ b1b2rMf ðhjT ÞTDhjT ;
ð15Þ

where b2 is a fixed parameter that limits the speed of the
descent.

Proof The proof is given by Dennis et al. [11] (see

Theorems 6.3.2. and 6.3.3. pp. 120–123).

Thus, substituting (10) into (15) results in the following:

1

2
jjRðhjT þ b1DhjT Þjj22)

1

2
jjRðhjT Þjj22

þ b1b2RðhjT ÞTJf ðhjT ÞDhjT ;
ð16Þ

which, using (14) on the right hand side and applying

algebraic operations, reduces to

jjRðhjT þ b1DhjT Þjj2) jjRðhjT Þjj2 þ
ffi
1* 2b1b2

p
;

ð17Þ

where b2 is a parameter controlling the speed of the line
search. Typically b2 = 1 9 10-4 [11].

Using the line-search globalization strategy, Newton’s

method can be modified to include a sufficient decrease
condition (a.k.a. Armijo’s condition). This condition is of

extreme importance for a successful gradient descent (for a

detailed explanation see [4]). The Globalized Newton
method is as shown in Algorithm 2.

Notice the new update step (18) that considers the suf-
ficient decrease condition. This will produce an acceptable

step towards the solution parameters hH
t . Section 5 shows

how to find the hyper-parameters from the LP-SVR model
introduced next.

3 LP-SVR formulation and hyper-parameters

This research aims to explore finding the hyper-parameters
of a linear programming support vector regression

(LP-SVR) approach, that uses an infeasible primal-dual

interior point method to solve the optimization problem
[3]. But in order to describe the LP-SVR formulation, it is

necessary to depart from the ‘1-SVR, having a training data

set T ¼ fxi; yigN
i¼1 of N samples of M-dimensional data,

i.e., x 2 <M , and a desired output class value y 2 <. The

formulation of an ‘1-SVR (i.e. norm-1-SVR) problem is as

follows:

min
a;n

jjajj1 þ 2C
PN

i¼1 ni

s.t.
yj *

PN
i¼1 aiKðxj; xiÞ * b) !þ njPN

i¼1 aiKðxj; xiÞ þ b* yj) !þ nj

n+ 0

8
<

:

for j ¼ 1; 2; . . .;N;

ð19Þ

where a is the vector of Lagrange multipliers associated
with the support vectors (SVs); the summation in the

cost function accounts for the !-insensitive training

error, which forms a tube where the solution is allowed
to be defined without penalization; C [0 is a constant

usually called ‘‘regularization parameter’’ that describes

the trade off between the training error and the penal-
izing term jjajj1; the variable ni is a nonnegative slack

variable that describes the !-insensitive loss function; y
is the desired output in response to the input vector x;

the variable b is a bias; Kð!; !Þ is any valid kernel
function (see [10, 40]). The parameter vector a and the

bias b are the unknowns and can take on any real value

as long as the inequalities given in the constraints are
satisfied.

Then, since the requirement of an LP-SVR (and of any

linear programming problem) is to have the unknowns
greater than or equal to zero, such variables are typically

decomposed in their positive and negative parts. Therefore,

one can denote a ¼ aþ * a*, and b = b? - b-. Then, in

order to pose the problem as a linear programming problem

in its canonical form and in order to use an interior point
method solver, problem (19) must have no inequalities;

thus, a slack variable u is required, which all-together

results on the following problem:

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

min
a,;b,;n;u

PN
i¼1 aþi þ a*i þ 2Cni

& '

s.t.

*
PN

i¼1ðaþi * a*i ÞKðxj; xiÞ ! ! !
bþ þ b * nj þ uj ¼ !* yjPN

i¼1ðaþi * a*i ÞKðxj; xiÞ ! ! !
þbþ * b* * nj þ uj ¼ !þ yj

aþj ; a
*
j ; b

þ; b*; nj; uj+ 0

8
>>>><

>>>>:

for j ¼ 1; 2; ! ! !;N;

ð20Þ

which is the formulation used in the analysis presented in

this paper, along with an interior point solver and a radial-

basis function (RBF) kernel with parameter c. Specifically,

the RBF kernel used is of the form e*cjjxj*xijj22 . The choice

of the kernel was made because RBF kernels have

demonstrated to be more robust in general cases, that is,
they represent the best choice whenever the researcher does

not have any (useful) prior information about the data used

[54]. Using this kernel, the following equation defines the
regression function for this problem:

FðxÞ ¼
XN

i¼1

ðaþi * a*i ÞKðx; xiÞ þ bþ * b*: ð21Þ

Note that (20) allows to define the following equalities:

A ¼ *K K *1 1 *I I
K *K 1 *1 *I I

! "

2N'4Nþ2

; ð22Þ

b ¼ 1!* y
1!þ y

! "

2N'1

; ð23Þ

z ¼ aþ a* bþ b* n u½ $T1'4Nþ2; ð24Þ

c ¼ 1 1 0 0 2C 0½ $T1'4Nþ2; ð25Þ

which is an acceptable linear program of the form:

minz cT z

s.t.
Az ¼ b
z + 0:

(
ð26Þ

Note that this problem has (4N ? 2) variables and

2N constraints.
This is a more suitable definition than the one described

in late 2009 by Lu et.al. [37] for interior point methods; and
also it is an extension of the LP-SVM work presented in

early 2009 by Torii et al. [61] and in early 2010 by Zhang

[70]. The main advantage of the proposed LP-SVR is a
sparser solution, meaning fewer support vectors, a more

efficient computation of the optimization problem, and a

very fast rate of convergence. However, note that since the
LP-SVR definition suffers from an increase in dimension-

ality, the approach presented in [55] is recommended (and

used here) for large scale problems.

4 Model hyper-parameters selection criteria: error
functions

In machine learning one typically wants to minimize the

true generalization error, implying that the deviation from
the expected output has to be measured in some way.

Indeed, the measurement of the generalization error is

model-dependent [6], suggesting that one machine learning
problem may have a particular method that performs better

than others, and a different problem may have a different

method that also works well; however, cross-validation-
based methods will perform well in the average case, as

discussed earlier. Nevertheless, cross-validation-based and

other methods for the estimation of the true generalization
error go together with error functions that measure and

inform the researcher on what basis the model is ‘‘good’’ or

‘‘bad’’. The method proposed in this research allows for
any error function to be used, as long as it is relevant or

useful for the application subject of research. As an

example of how the proposed model works, the following
paragraphs discuss error metrics chosen particularly

for classification and regression problems based on the

LP-SVR model described in (20).

4.1 Multi-class and two-class problems

To particularize, this research aims to estimate the model

vector of hyper-parameters h ¼ C; c½ $. The error functions
proposed for multi-class problems are two: a modified

estimate of scaled error rate (ESER) and the balanced error

rate (BER) [6]. The ESER metric is given by

r1ðhjT Þ ¼
XN

i¼1

fWfðFðxiÞ * yiÞ * 0:5g; ð27Þ

where FðxÞ is the actual output of the LP-SVR classifier
when the input vector x is presented as its input, as in (21);

f is a scaling factor used only to match the ESER to a
desired range of of values; and the Wf!g function is given

by

Wfxg ¼ 1

1þ e*sx
; ð28Þ

which is an approximation to the well known ideal unit step

function. The quality of the approximation is given by the
parameter s as illustrated in Fig. 2. Throughout this

research f is fixed to 1
N. If f ¼ 1

N, then r1 has values only

within the interval r1 2 ½0; 1$ which is desirable. The

smaller the ESER is, the better the hyper-parameters are.
In some special cases, the ESER may become biased

towards false positive counts, especially if there is a large

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

number of unbalanced class examples. To alleviate the

problem, the BER is used, which is defined as follows:

r2ðhjT Þ ¼
1

2

P
FPP

TN þ
P

FP
þ

P
FNP

FN þ
P

TP

) *
; ð29Þ

where TP stands for ‘‘True Positive,’’ FP ‘‘False Positive,’’
TN ‘‘True Negative,’’ and FN ‘‘False Negative.’’ The

domain of the BER falls within the interval r2 2 ½0; 1$,
having that a small BER represents a good set of hyper-
parameters.

Clearly, the BER meets the classical misclassification

rate if there are equal number of positive and negative
examples, that is the case in which

P
TN ?

P
FP =P

FN ?
P

TP (see [6]).

In a two class approach, it is more convenient to use the
area under the receiver operating characteristic (ROC)

curve, as well as the BER metric. It is well known that

maximizing the area under the ROC curve (AUC) leads to
better classifiers, and therefore, it is desirable to find ways

to maximize the AUC during the training steps of super-

vised classifiers [13]. The AUC is estimated by means of
adding successive areas of trapezoids. For a complete

treatment of the ROC concept and AUC algorithm, please

consult [13]. Let us define the function r1 for the two class
approach as follows:

r1ðhjT Þ ¼ 1* AUCð!Þh;T ; ð30Þ

where the AUCð!Þ is computed using Algorithms 1, 2, and

3 from [13]; and its interval is r1 2 ½0; 1$. Let us recall that,
essentially, it is desired to have an r1ðhjT Þ ¼ 0, which

evidently in (30) means a maximization of the AUC. The

function r2 for the two-class approach is the same BER as

in (29).

The metrics for regression problems are quite different,
as explained in the following section.

4.2 Regression problems

In regression, different measures of error are required to

make a significant and meaningful progress towards a
solution. The typical measure of error in regression prob-

lems is the mean squared error (MSE). However, for the
sake of investigating other options, this research uses two

different error functions for regression: sum of squared

error (SSE) [6], and a statistics-based metric, which from
hereafter will be referred to as ‘‘STAT’’ (this is not an

acronym, but a name that the authors made up for a STA-
Tistics-based metric). Note that there is no actual need to
have two metrics, indeed the problem could be solved with

only one, nonetheless, this research uses two error functions

to show that the algorithm performs well in complicated
scenarios, in which two or more functions are used. The

STAT function is an original contribution of the authors of

this research; and the SSE metric, however, is given by

r1ðhjT Þ ¼
XN

i¼1

ðFðxiÞ * yiÞ2; ð31Þ

where FðxÞ is the actual output of the classifier LP-SVR
when the input vector x is presented at its input. The

domain of the SSE is in the interval r1 2 ½0;<þ$, and the
desired response is as near as zero as possible.

The second metric is based on the statistical properties

of the residual error given by the difference FðxiÞ * yi.
From estimation theory it is known that if the expected

value of the residual error is equal to zero and the variance

is unitary, we have achieved the ordinary least squares
solution to the regression problem, assuming that the

training set has zero mean and unit variance [60]. Fur-

thermore, it is also understood that as the variance of the
residual error approaches zero, the regression problem is

better solved [29]. Let us denote the expected value of the

residual error as

l ¼ E½FðxiÞ * yi$ ¼
1

N

XN

i¼1

FðxiÞ * yi; ð32Þ

and the variance of the residual error as follows:

r2 ¼ E½FðxiÞ * yi * l$2 ¼ 1

N * 1

XN

i¼1

ðFðxiÞ * yi * lÞ2;

ð33Þ

from where it is desired that l; r2 ! 0. Hence, the second

error metric is defined as

Fig. 2 Unit step function approximation. A function Wf!g was used
for convenience in easing computations

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

r2ðhjT Þ ¼ r2 þ
ffiffiffiffiffi
l2

p
; ð34Þ

where the term
ffiffiffiffiffi
l2

p
has the meaning of the absolute value of

the mean, and was chosen for convenience since jlj -
ffiffiffiffiffi
l2

p

is easier to handle in optimization problems. The domain of

STAT falls within the interval r2 2 ½0;<þ$:
Note that when the two functions are used, the SSE

metric is likely to weight more during the early iter-

ations of the optimization process, this is mainly
because its scalar value would be very large; however,

as the method comes closer to the solution, the SSE

metric is likely to have small values and the STAT
metric is likely to weight more towards the minimi-

zation of the function, refining the current solution

which was obtained under the lead (the weighing) of
the SSE.

5 Implementation and considerations

This section takes the general method presented in Sect. 2
and particularizes it to the hyper-parameters of the LP-SVR

model presented in Sect. 3, using the generalization error

metrics discussed in Sect. 4 to find a good set of hyper-
parameters. This particularization or implementation is

discussed next.

5.1 Nonlinear least squares quasi-Newton

implementation

Particularizing (1) for the cases presented in Sects. 3–4, the

formulation of F simply becomes

RðhjT Þ ¼ r1ðhjT Þ
r2ðhjT Þ

! "

2'1

; ð35Þ

where clearly R : <2 7!<2 since h 2 <2. The typical

challenge is to compute (3), the Jacobian matrix Jf ðhjT Þ,
since not all the error functions are analytically

differentiable, i.e. (29) or (30). Then, the classical
approaches are to estimate Jf ðhjT Þ via finite difference

approximation, or secant approximation. For its
robustness and precision over the secant method [11],

this research uses the finite difference approximation. In

this case, eJf ðhjT Þ corresponds to a finite difference

derivate approximation which solves (3) using (4) where

orn

oh1
. rnðh1 þ h; h2Þ * rnðh1; h2Þ

h
; ð36Þ

orn

oh2
. rnðh1; h2 þ hÞ * rnðh1; h2Þ

h
; ð37Þ

allowing h to be sufficiently small, as appropriate.

5.2 Possible upper bounds and an initial set

of hyper-parameters

Although the globalization strategy presented in Algorithm

2 prevents Newton method from going far away from a

solution, and though it guarantees a decrease of the gen-
eralization error at each iteration, its success relies upon a

‘‘good’’ initial set of hyper-parameters. A common

approach to find a ‘‘good’’ initial set of hyper-parameters
consists of varying C and c in a grid of equally spaced

intervals and observing the pair of hyper-parameters that is

producing the minimum error. Typically, this is achieved

by varying C in the interval C 2 f2*5; 2*3; . . .; 213; 215g
and c 2 f2*7; 2*6; . . .; 21; 22g; this method is known as

‘‘grid search’’ [1, 12, 45]. This approach, in spite of being
very powerful to find a good starting set of hyper-param-

eters, requires a loop of 110 iterations (for the example

shown above), which is very costly, specially in large
machine learning problems. This problem gave the

opportunity for researchers to work in ways to reduce the
number of iterations required.

Recent findings by Ortiz et al. [45], show that it is

possible to establish upper bounds to the search space of
the hyper-parameters; evidently, with a reduction of the

search space, the total search time may drop considerably

when the data set is large. Ortiz et al., studied the rela-
tionship and relevancy of the hyper-parameters of a tradi-

tional SVR model, and although the proposed research

works with a different SVR model, i.e. an LP-SVR, their
findings can also be extended to this research with the next

minor adaptations. The following equation defines the

upper bound for C:

C) ymax
i * 2ymin

i * !
1* 1

N*1

PN
j¼1; j 6¼i Kðxj; xiÞ

; ð38Þ

where the input vector xi is set to the input vector corre-

sponding to the highest output yi
max; yi

min corresponds to the

lowest output; and ! corresponds to the loss function
parameter used in problem (20).

Similarly, the following equation defines the upper

bound for c:

c) * lnð0:001Þ

1
N

PN
j¼1 min

j;i 6¼j
dðxj; xiÞ

) *2
; ð39Þ

where min
i 6¼j

dðxj; xiÞ is the minimum distance between two

vectors in the training set. The denominator of (39) can be
interpreted as the average of the minimum distances

between the vectors of the training set, while the numerator
is related to the amplitude of a Gaussian function that has

negligible influence in the SVs [45]. Both, the upper bound

for C in (38) and for c in (39), restrict the search space and

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

may also reduce the time of the grid search strategy;

therefore, this could be a good alternative when a grid-

search method is used or when constrained optimization
problems are used; however, since this research uses an

unconstrained optimization method i.e., a nonlinear least

squares method with a quasi-Newton implementation, this
bound may not be helpful, and, as it will be shown later, it

does not perform well for all problems. Thus, other alter-

natives were indeed explored.
In 2003, Cherkassky et al. [8] developed a method

called ‘‘Practical Selection’’ that estimated the hyper-
parameters of an SVR. The authors used statistical prop-

erties of the training set to provide an educated guess for

each of the hyper-parameters. Given the simplicity of the
estimation and since no iterative process is required, this

research uses Cherkassky’s estimates as initial hyper-

parameters for all the proposed algorithms. The following
equation defines the initial value for the regularization

parameter C:

C ¼ max jE½y$ þ 3ryj; jE½y$ * 3ryj
+ ,

; ð40Þ

where E[y] is the expected value of the desired output y of

the training data set; and ry is the standard deviation of y.

On the other hand, the kernel parameter c ¼ 1
2r2 can be

computed using the following definition [8, 26, 27]:

r ¼ 0:3 xmax * xminð Þ; ð41Þ

where xmax and xmin are maximum and minimum values of
the training set input values respectively; which is equiv-

alent to r ¼ 0:3 / rangeðxÞ.
As it can be seen, the estimation of the hyper-parameters

using (40) and (41) is fairly simple and does not involve

any kind of iterative process or SVR training. Therefore,

this research suggest the usage of both (40) and (41) to
estimate the initial values for C and c respectively. With

respect to the parameter !, the research presented in this

paper opted to leave ! as a free parameter. This parameter
corresponds to the loss function and controls the width of

the !-tube; the authors of this research are convinced that

this parameter has much to do with the tolerance or over-fit
that the researcher wants to allow in every particular

problem, i.e., ! is directly dependent of, and unique to,

every problem and application; and ultimately it has been
demonstrated that the most relevant parameter is C [45];

however, the fact that a poor selection of ! impacts the

value of C, obligates the researcher to observe carefully
how the value of ! is used. Therefore, if the reader desires

to estimate an initial ! parameter for the loss function, it

can also be obtained with the following equation [8]:

! ¼ 3r!

ffiffiffiffiffiffiffiffiffi
ln N

N

r
; ð42Þ

where N is the number of samples and r! can be estimated

from the following equality:

r2
! ¼

N

N * d

1

N

XN

i¼1

yi * ŷið Þ2; ð43Þ

where d is the degree of a polynomial that is trying to fit y,

and ŷ is the output given by the polynomial function of

degree d.

5.3 K-fold cross validation

Every time (1), or particularly (35), are evaluated, true

generalization error estimates become necessary for the

success of the hyper-parameters estimation. ‘‘True gener-
alization error estimates’’ refers to training the LP-SVR,

observing the actual output and comparing it to the desired

output obtaining an amount of error that ideally should be
as close as possible to the amount of error obtained using a

test set.

Estimating the true generalization error given a training
set T is not a trivial task. The best two approaches to solve

this problem are: K-fold and leave-one-out (LOO) cross
validation. The former is the best for moderate to large-

scale applications, while the latter is excellent for very

small applications since it is known to be close to an
unbiased estimator [58].

This research uses the K-fold cross validation approach

for all the experiments that involve the final algorithm. In
this approach, the training data set is divided in a jKj
number of slices or folds. Then it follows to define a rule to

find a reasonable number of partitions in K, that is:

jKj ¼ max 5;
N

N * q

- .(/
; ð44Þ

where q represents the maximum number of samples that
make (26) computationally tractable with traditional

training methods; the function b!c represents a round down

operation; and jKj is the number of slices in K. This
equation can be justified in two ways: (i) when the problem

is, computationally-speaking, small, a 5-fold cross valida-

tion suffices and it is proven to be one of the best estimators
[58]; (ii) with a large-scale problem, it makes sense to use

large-scale SVR training methods which usually require

cutting the problem in pieces that are computationally
tractable [54], therefore, using a similar approach, this

research proposes to increase the number of slices (or

folds) in relation to the number of samples that are com-
putationally tractable with a conventional SVR training

method. It is known [58] that as the number of slices or

folds increase, the less biased the error estimation becomes.
E.g., consider the LOO cross validation which is the case

when jKj ¼ N. Thus, the main advantage of using (44) is a

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

better estimation of the true error and a possible reduction

of the total training time; while at the same time, for small

problems, Eq. (44) chooses the minimum best number of
slices i.e., five.

The slices in the set K are denoted as

K ¼ fs1; s2; . . .; skg; ð45Þ

where k ¼ jKj, and sk denotes the k-th slice and contains

the indexes of those training data points in T ¼ fxi; yigN
i¼1.

Therefore it is clear that sk 0 f1; 2; . . .;Ng and Kj
f1; 2; . . .;Ng.

The general concept is to partition the training set T in

jKj groups of data (ideally of equal size), then train the
LP-SVR classifier with jKj* 1 and use the remaining data

as validation set. The process is repeated for all the parti-

tions sk and the error is averaged as follows

eRðhjTKÞ ¼
1

jKj
XjKj

k¼1

RðhjT skÞ; ð46Þ

where RðhjT skÞ is the error obtained for the k-th portion;
eRðhjTKÞ is an estimate of the true generalization error;
T sk ¼ fxi; yigi2sk

and T K ¼ fxi; yigi2K.

5.4 Final algorithm

Algorithm 3 shows the final methodology after certain

considerations that are explained here. To review this final
algorithm let us proceed to briefly revisiting each step. The

inputs of the algorithm are (i) the indexes K corresponding

to the cross validation indexes and (ii) the training set T
from which the LP-SVR hyper-parameters hH are to be

estimated. The notation that uses a ‘‘star’’, e.g., hH, is used

to denote a solution, while the notation with a ‘‘star and

tilde’’, e.g., ehH, means a very good approximation to a

solution using an inexact method, which in this case cor-
responds to a quasi-Newton method that uses an finite-

differences estimate of the partial derivatives in the Jaco-

bian matrix. In Step 1, the algorithm requires a set of initial
parameters h0 ¼ C0; c0½ $; these are given by (40) and (41)

respectively. In Step 3, the algorithm proceeds using the

approximation to the true Jacobian (35)–(37) as shown in
Sect. 5.1. This is the most expensive part of the algorithm

since every single function call of (35) requires cross val-
idation, as explained in Sect. 5.3. However, by ‘‘recycling’’

previously computed partial derivatives, all unnecessary

additional computations could be avoided. That said, notice
that the linear system was expected to be

DhtjT K ¼ *
h
eJf ðhtjT KÞTeJf ðhtjT KÞ

þ ZðhtjT KÞ
i*1eJf ðhtjT KÞT eRðhtjT KÞ;

ð50Þ

which follows from Algorithm 2, but instead it now is

DhtjT K ¼ *
h
eJf ðhtjT KÞTeJf ðhtjT KÞ:

þ lk þ dð ÞI
i*1eJf ðhtjT KÞT eRðhtjT KÞ:

This change is justified in the following manner. In (50),
the term ZðhtjT KÞ corresponds to the second order

information shown in (6). But in most cases, second

derivatives are not available or are expensive to obtain
and implausible, if not impossible. Fortunately, the

impact of Z in the equation is almost negligible and the

community allows its removal because the consensus is
that the Jacobian provides the most relevant information

[44]. That is,

Jf ðhjT ÞTJf ðhjT Þ þ ZðhjT Þ . Jf ðhjT ÞTJf ðhjT Þ; ð51Þ

and therefore (48) drops out Z. This is expressed as in (47)
and is known as the G‘auss-Newton method; for more details

see [11]. Since one of the problems of this method is when

the Jacobian is ill-posed, this research adds a constant that is
proportional to the minimum eigenvalue of the Jacobian to

itself in order to alleviate the issue. Thus, the algorithm

includes the following verification procedure (Step 3.a): if
the minimum eigenvalue, lk, is strictly positive, then, pro-

ceed with the typical Gauss-Newton linear system (47);

otherwise, add a constant proportional to the minimum
eigenvalue and then, solve the linear system (48). The con-

stant d[0 is sufficiently small so that it cannot be inter-

preted as zero, and I is the identity matrix of identical size to
the Jacobian. In (48) the typical choice is d = 1 9 10-8.

Finally, in the process of matrix inversion this research

suggests the use of the well known direct approach called

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

LU-factorization [44] for all large-scale cases; or also an

indirect approach such as the classic conjugate gradient

algorithm by Hestennes [21] may be used as well.
The remaining steps are the Armijo’s condition and

update, which did not suffer any changes. At ‘‘the end’’, the

final algorithm returns the set of estimated hyper-parame-

ters, ehH, that minimize the generalization error with K-fold
cross validation. The term ‘‘the end’’ of the algorithm here

means that the algorithm stops and returns a solution. For

this reason, this paper defines four options to stop the
algorithm. The first option is the natural stop, when it is

said that the algorithm ‘‘converged’’, which in this case is
the fulfillment of the following inequality:

jjeRðhtjT KÞjj2) e1; ð52Þ

where e1 is chosen by the researcher. Ideally the left side

term of (52) would be zero, or would use e1 ¼ 1' 10*4, or

another value sufficiently small. In practice, it is rare that the
problem is minimized to zero; however, in any linearly-

separable or non-linearly separable problems (speaking of

classification) a zero residual can be achieved, but not so in
regression, unless the problem is trivial. Clearly, the

minimum of (2) is also the minimum of the left side of

(52). Then, another option to stop the algorithm is to monitor
every set of hyper-parameters produced at each iteration and

measure its change between iterations as follows:

jjhtþ1 * htjj2) e2; ð53Þ

where e2 is typically set to a very small value; this

parameter is given by the researcher. Condition (53) states

a stopping criteria if the algorithm has no variability in
terms of the updates at each iteration. However, it may

happen that the algorithm is indeed changing the solution

ht at each iterate, but indeed this represent no significant
progress towards a solution. In such case, the following

stopping criteria is used:

jjeRðhtjT KÞjj2 * jjeRðhtþ1jT KÞjj2
000

000) e3; ð54Þ

where e3 is sufficiently small. Therefore, even though the

algorithm makes progress updating its hyper-parameters, if
the new set does not produce a sufficiently ‘‘better’’ set of

hyper-parameters, then it should stop. Finally, the last

stopping criteria monitors a number of maximum iterations.
The criteria is simply

t) e4; ð55Þ

where e4 is the maximum number of iterations permitted;

this parameter is also given by the researcher. Every detail
explained up to this point completes the analytical and

numerical considerations of the algorithm; the next section

introduces the experiments conducted over different data
sets and analyzes the results obtained.

6 Experimental results

To show the effectiveness and efficiency of the proposed

hyper-parameters selection method, this research carried

simulations over different data sets. The summary of the
properties of these data sets are shown in Table 1. The next

section presents a brief description of the data sets; and

then follows a discussion of the methodology followed in
this research.

6.1 Data sets

The first data set is the well-known Ripley problem [46, 52]

which consists of two classes where the data for each class
have been generated by a mixture of two Gaussian distri-

butions. The Sonar data set corresponds to the classifica-

tion of sonar returns for two targets under the sea level: a
metal cylinder and a similarly shaped rock [17]. The Wine
data set [15, 31] contains results of wine chemical analysis

within the Italy region but was derived from three different
vines. The analysis consists of 13 attributes of two different

groups of wine. This data set is also part of the UCI

machine-learning repository [16]. The Spiral data set is a

Table 1 Summary of the dimensions and properties of the data sets
used for the proposed experiments. The simulations include classifi-
cation and regression examples

Data set Classes Features Training Testing References
M N N/

Ripley 2 2 250 1,000 [46, 52]

Sonar 2 60 104 104 [17]

Wine 2 13 110 20 [15, 31]

Spiral 2 2 200 101 [34, 67]

ADA 2 48 4,147 415 [33]

GINA 2 970 3,153 315 [35]

HIVA 2 1,617 3,845 384 [6]

NOVA 2 16,969 1,754 175 [16, 24]

SYLVA 2 216 13,086 1,308 [5, 9]

Iris 3 4 130 20 [14, 18]

MODIS 4 4 374,566 85 ?
mil

[53]

SincF < 1 200 200 [47]

LoadP < 8 35,064 8,784 [28]

MortPollution < 15 48 12 [39]

Bodyfat < 13 201 52 [48]

Betaplasma < 12 252 63 [43]

Retplasma < 12 252 63 [43]

Autompg < 7 313 79 [50]

Housing < 13 404 102 [50]

Concrete < 16 824 206 [68]

Abalone < 8 3,341 836 [64]

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

synthetic data set that consists of a two class problem with

an extremely non-linear decision surface and is typically
used to test the ability of classifiers in finding such difficult

decision functions [67]. ADA is a marketing- related data

set [33]. The goal of ADA is to discover high revenue
people from census data. This is a two-class classification

problem. The raw data from the census bureau is also

known as the Adult database [25, 49] in the UCI machine-
learning repository [16]. GINA is a digit recognition-related

data set that is commonly known as the MNIST database of
handwritten digits [35]. GINA aims to provide features for

handwritten digit recognition [9, 49]. HIVA is a data set

related to HIV infections. The goal of HIVA is to provide
features for prediction of active compounds within an

AIDS HIV infection [6]. NOVA is a text classification data

set. The data of NOVA comes from the UCI repository [16]
which is also known as Twenty-Newsgroup data set [24].

SYLVA is an ecology-related data set that is also part of the

UCI repository [16] under the name of covertype data set
[5, 9]. The SYLVA data set aims to provide features for

forest cover type classification. The Iris data set is perhaps

the best known database to be found in the machine
learning literature and is also part of the UCI data set [16].

The data set contains three classes of 50 instances, where

each class refers to a type of Iris plant [14, 18]. The MODIS
data set was obtained from a dust storm detection project

developed by the principal author of this paper while at

NASA Goddard Space Flight Center [53].
The SincF data set aims to fit the ‘‘sinc’’ function, which

is a typical function to approximate [47]. The SincF data

set consists of unevenly sampled points from the sinc
function, f(x) = sinc(x). The LoadP data set is a relatively

new data set extracted from New England’s power network

data [28, 54]; it consists of different physical measurements
used to predict the electric power load for any given hour

of the day. MortPollution uses pollution data to analyze the

mortality rate in relationship with the age [39]. Bodyfat
determines the amount of fat in the body based on a

number of different measurements [48]. Betaplasma and

Retplasma analyze the risk of developing cancer using
factors such as plasma and retinol concentration [43]. The

Autompg data set studies the fuel consumption of a vehicle

within a city considering different factors; and the Housing
data set deals with the value of property in the Boston area

[50]. Concrete aims to model the compressive strength of
the concrete material based on the components mixture

used for that particular kind of concrete [68]. And finally,

the Abalone data set models the age of abalones given their
physical properties [64]. Note that although Abalone is a

multi-class problem, it will be addressed as a regression

problem in order to compare results with [45]. Such results
will be explained in the next paragraphs.

6.2 Methodology and results

The data sets were divided in the amounts indicated in

Table 1; the training samples were selected in the exact
order as they appear in the original data sets. The initial

values for the hyper-parameters and the upper bounds were

estimated from the training set T . In most instances the
initial values were close to the solution and reduced the

number of iterations; similarly, the upper bounds in most

cases contained a global minimum. To exemplify this sit-
uation, Fig. 3b depicts the contour plot produced by metric

SSE for the Abalone data set; the figure shows the initial

point and upper bounds obtained with the methods dis-
cussed in Sect. 5.2 and the global minimum found with the

proposed algorithm. In this case, the upper bounds contain

the global minimum; however, consider the case of Fig. 4b
which shows a contour plot of the STAT error measure for

(a) (b)

Fig. 3 Abalone data set analysis. The surface plot (a) shows a main valley where the initial point is located for the advantage of the proposed
algorithm. The contour plot (b) depicts the upper bounds that can be used to reduce the search space of search-based algorithms

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

the MortPollution data set; the figure shows the initial

point, upper bounds, and the global minimum. Clearly, the
upper bounds obtained using Ortiz et al. method [45] fail to

contain the estimated initial point nor the global minimum;

therefore, any constrained search-based or optimization-
based algorithms may fail to obtain a ‘‘good’’ set of hyper-

parameters. Consequently, this research only relies on the

initial hyper-parameters previously described, which are
supplied as inputs for Algorithm 3. Note that although this

research avoids using the upper bounds, they were included

in this paper to encourage and motivate the reader to
advance the research in this area.

When Algorithm 3 is finished processing each data set

using the training set T , the resulting estimated hyper-
parameters are those shown in Table 2. The second column

of Table 2 shows the total number of iterations at the point

where the algorithm stopped; in average the total number
of iterations is around seven, which is one of the most

important properties of the method. Column three and four

of Table 2 show the hyper-parameters found; while the
fifth column reports the ‘2-norm of the residual error pro-

duced by the algorithm at the last iteration. Note how

variable is this value depending on the data set, specially
for regression since the error functions to minimize vary

and have different output domains. Finally, the sixth col-

umn shows the criteria that made the algorithm stop; it is
clear that the most common is the criteria e3 described in

(54). This latter statement suggests that the algorithm

stopped because no further progress was being made
towards the solution, i.e., a minimum has been reached. An

example of this is the case presented in Fig. 4; the algo-
rithm proceeds iteratively making progress towards a

minimum as indicated by the gradient and its direction. As

indicated in Table 3 and depicted in Fig. 4, the algorithm

used 15 iterations until there was no significant difference

between the residual error in the current iteration and in the
previous iteration, that is, the algorithm stopped using

criteria e3. The second most common stopping criteria was

that of e2 in which the actual set of hyper-parameters in the
current iteration was not significantly different than the set

given by the previous iteration; this is precisely the case

shown in Fig. 3 where the algorithm stops after 2013_153
three iterations. In rare cases, mostly when the data set is

separable (in classification) or easy to fit (in regression), the

algorithm stops by finding a minimum to the linear least
squares problem.

Up to this point the experiments only involve the

training set T . The second part of the experiments involves
the testing set in order to analyze the generalization

capabilities and the quality of the hyper-parameters found

i.e., the set of hyper-parameters C and c. For this purpose,

let us define D ¼ fxi; yigN/

i¼1 as the testing set, where N/ is

the number of samples available for testing. The value for

N/ comes directly from Table 1. Let us remark that the

testing set D has never been shown to the LP-SVR model
before nor it has been used for the estimation of the initial

hyper-parameters. Thus, the experiments consists of using

the testing set D as inputs for the following regression
function:

FðxÞ ¼
X

i2SV

ðaþi * a*i ÞKðx; xiÞ þ bþ * b*; ð56Þ

where SV denotes the set of indexes corresponding to the

support vectors found during the training phase, i.e., the
indexes corresponding to those a? and a- greater than zero

[62]; b is also given after training with the corresponding

hyper-parameters shown Table 2. Note that (56) is simply a
particular case of (21) which corresponds to the LP-SVR

(a) (b)

Fig. 4 MortPollution data set analysis. The surface plot shown in
(a) demonstrates the complexity of the problem as it has many local
minima; however, the initial point is placed in a position that allows

the proposed algorithm to make progress towards the solution. The
contour plot in (b) shows the upper bounds that fail to contain either
the initial point or the minimum found with the proposed algorithm

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

model in (20). Then the output FðxiÞ is observed for all

i 2 D and the different error metrics presented in Sect. 4

are computed with the purpose of assessing the quality of
the final solution. This analysis is shown in Table 3, which

presents the result of the n-th function (or error criteria),

rnðehHjDÞ, evaluated at the approximate solution ehH using

only the testing set D. These results are shown in columns
two through six. In column number two is shown the

modified estimate of scaled error rate (27), which was used

with parameters f ¼ 1
N/ and s = 100. The parameter f was

chosen by convenience in order to have an error within the
interval [0, 1]. The third column displays results for when

the balanced error rate (29) was utilized. The area under the

ROC curve (30) shown in the fourth column also produces
a result within the same interval as the BER. Note that

classification error functions in average are very close to

zero for practical purposes, which is desirable.
For regression problems, the error functions used are

shown in the fifth and sixth column; the metrics have a

wide interval that is always positive, i.e., the sum of
squared errors (31) and the statistical properties (34) fall

into the interval [0,<?]. These large outputs in the SSE and

STAT metrics are expected since neither the target, y, nor

the output data, FðxÞ, have been passed through any pre-
processing technique, e.g., normalization to zero mean and

unit variance; however, for a qualitative analysis in the

statistical sense, this research includes, in Table 3 columns
six through seven, the statistical properties of the residuals

given by ðFðxÞ * yÞD. This residual is acquired by showing

the testing set D to the LP-SVR model with hyper-

parameters ehH and measuring the output FðxÞ. However,
this time, the standard normalization procedure is followed

[45], that is, the desired output yi, for all i 2 D, is nor-

malized to have zero mean and unit variance, using the
exact same shifting and scaling factors to shift and scale

FðxÞ. Ideally, it is desired for the average of the residuals to

be zero, as well as their standard deviation. As the table
shows, the proposed set of hyper-parameters produces near

zero mean and small variance residuals in the case of both

classification and regression, which typically indicates
good classification and regression models and low error

predictions. For two and multi-class classification prob-

lems, the table shows low errors, meaning good general-
ization capabilities.

6.3 Comparison with other methods

Finally, this research introduces Table 4, which shows a

comparison of the proposed method for finding SVR hyper-
parameters with other algorithms. The first method is

known as ‘‘Grid Search’’ [45], which is typically the ‘‘brute

force’’ way to determine a ‘‘good’’ set of hyper-parameters.
The Grid Search method can be very costly, in terms of

computational expense, depending on the level of refine-
ment desired. The second method of comparison is the

‘‘Pattern Search’’ method [41], which searches for a solu-

tion in the hyper-parameters space neighborhood until it
finds a neighbor location that produces a smaller error than

in the current location. The third comparison method

involves a Genetic Algorithm [63] that performs the search
for hyper-parameters based on mutation and reproduction

theories. The new generation of hyper-parameters may

reduce the error of the current generation of hyper-
parameters. The last method of comparison is known as

‘‘Practical Selection’’ [8] which is simply a heuristic used

to directly estimate a ‘‘good’’ set of hyper-parameters. The
experimental results carried by Ortiz et al. [45] are inclu-

ded in this table. These results involve measuring the root

mean squared error (RMSE), and the total training time of
each algorithm. The code number for the first column

regarding the data sets is as follows: 1=MortPollution,

2=Bodyfat, 3=Betaplasma, 4=Retplasma, 5=Autompg,
6=Housing, 7=Concrete, and 8=Abalone. Notice that in this

experiment, the three hyper-parameters C, c, and ! are

Table 2 Algorithm results for each data set: number of iterations,
regularization parameter, kernel parameter, ‘2-norm of the residual
function, and stopping criteria

Data set e1 ¼ 1' 10*4; e2; e3 ¼ 1' 10*3, and e4 ¼ 100

t Ct
ffiffiffiffiffi
1

2ct

q
jjeRðhtjT KÞjj2 Stop Crit.

Ripley 5 5.047 0.2501 0.0021 e3

Sonar 5 5.413 1.5041 0.0013 e3

Wine 2 0.031 0.2500 0.0001 e1

Spiral 4 8.287 0.2515 0.0001 e1

ADA 6 0.460 117.82 0.9813 e3

GINA 9 0.125 157.49 0.1658 e2

HIVA 10 0.500 8.0730 0.0954 e3

NOVA 14 2.004 4.7045 0.0313 e2

SYLVA 4 1.125 4,096.1 0.1512 e2

Iris 3 11.46 1.7726 0.0019 e3

MODIS 7 0.501 0.1249 0.0813 e3

SincF 5 959.1 0.9978 0.0011 e1

LoadP 4 0.499 0.1254 0.0210 e2

MortPollution 16 548.1 748.28 7.6488 9 104 e3

Bodyfat 8 1.112 104.12 0.0002 e1

Betaplasma 5 733.6 2413.8 4.0432 9 1013 e3

Retplasma 6 1179 2413.8 6.2076 9 1013 e3

Autompg 4 41.41 1541.7 1.2210 9 106 e3

Housing 7 51.98 199.8 7.6078 9 106 e3

Concrete 11 89.21 343.5 2.1263 9 109 e2

Abalone 3 630.9 194,984 2.1886 9 108 e2

Average 6.6 – – – Mode: e3

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

being calculated following the exact same guidelines as in

[45]. However, they are not optimizing RðhjT Þ, i.e. authors

use their own method to obtain the hyper-parameters.
As Table 4 shows, for most cases the proposed method

finds a better solution in terms of the RMSE which is the

primary goal of this research. However, even though this
research is not primarily focused on reducing the compu-

tational time, it should be noted that as the size of the
problem increases, less time is required for training. Also,

two things should be noted in regard to the reduction in

training time. First, the difference in the training method-
ology from the experiments of Ortiz et al. [45] and the

experiments of this research is that this research uses a

training methodology that is more efficient in large-scale
settings since it provides sparser solutions [54]; therefore,

table shows that for the proposed method the time becomes

less as the scale of the problem increases, but the converse
is also true, the smaller the problem the more it takes to

finish the training in comparison with the other methods.

Second, the relatively high training time for the smaller
problems can be safely attributed to the inherent compu-

tational expense of the line-search strategy of the proposed

quasi-Newton method and the unpredictability of the error

surface as it leads or misleads the optimization process.

Consequently, this research finds its best applicability in
large scale problems which is currently one of the major

issues in the area [54]. In fact Ortiz et al. pointed out that it

is ‘‘impracticable’’ to use direct methods in large-scale
SVR problems, and that their search space reduction

method could help in reducing training time [45]. How-
ever, the alternative presented in this research clearly is

better shaped for medium to large-scale applications. The

authors of this research leave as future work, the study of
different or more error functions.

As a final remark, note that the concepts discussed in

this paper can also be applied to other SVM/SVR-based
learning machines with little or no modification. And one

of the most important properties of the proposed method is

that, being a nonlinear least squares problem, one may
choose any number of error functions to minimize, and any

number of hyper-parameters to estimate. The recommen-

dation is to keep it simple, one or two error functions and
two or three hyper-parameters should suffice; it is highly

recommended for the number of error functions to always

Table 3 Analysis of the final quality of the proposed methodology

Data set rnðehHjDÞ ðFðxÞ * yÞD

ESER BER 1-AUC SSE STAT lD rD

Ripley – 0.0852 0.0259 – – -0.0660 0.4023

Sonar – 0.0506 0.0631 – – 0.0385 0.2760

Wine – 0.0000 0.0000 – – 0.0008 0.0007

Spiral – 0.0000 0.0000 – – 0.0001 0.0008

ADA – 0.1486 0.0669 – – 0.0012 0.2001

GINA – 0.0027 0.0000 – – 0.0069 0.0397

HIVA – 0.1714 0.0452 – – 0.0270 0.1609

NOVA – 0.0000 0.0000 – – 0.0003 0.0189

SYLVA – 0.0056 0.0000 – – -0.0016 0.1980

Iris 0.0008 0.0001 – – – -0.0001 0.0022

MODIS 0.0069 0.0317 – – – 0.0704 0.3109

SincF – – – 0.0003 0.0012 0.0001 0.0008

LoadP – – – 0.0097 0.1151 -0.0175 0.1112

MortPollution – – – 18,707 1,693.5 -0.0493 0.6609

Bodyfat – – – 0.0058 0.0009 0.0412 0.5709

Betaplasma – – – 1,355,801 21,710 -0.0708 0.8049

Retplasma – – – 3,568,079 49,342 -0.4326 1.0624

Autompg – – – 1,112.7 14.575 -0.0186 0.4867

Housing – – – 1,331.9 13.314 -0.1082 0.3816

Concrete – – – 8,829.7 43.313 0.0245 0.3921

Abalone – – – 2,593.9 3.3164 0.0931 0.5387

Average 0.0039 0.0450 0.0223 – – -0.0219 0.3153

The testing set, D, is presented as input for the trained LP-SVR models using the hyper-parameters found, ehH, and the different error metrics, rn,
are computed for the final assessment of the generalization error for each metric, corresponding to each column

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

exceed or equal the number of hyper-parameters to be
estimated.

7 Conclusions

This paper discussed an algorithm for LP-SVR hyper-
parameters selection. This research proposes a quasi-

Newton method for a minimization problem known as

nonlinear least squares problem, that uses a Gauss-Newton
gradient, a globalization strategy, and an inexact compu-

tation of first order information, that is, the Jacobian is
computed via finite differences. The need for a ‘‘good’’

initial point in the hyper-parameters space is alleviated

using existing methods that proved to be crucial in the
rapid convergence of the proposed algorithm.

This research explored the cases of two and multi-class

problems including regression; experimental results sug-
gest that the algorithm achieves negligible variability when

analyzing the statistical properties of the residual error.

Simulations included mostly standard benchmark data sets
from real-life applications, a small number of synthetic

data sets, and also, comparisons with other state-of-the-art

search methods. When the method was compared to other
approaches, it was found that in terms of the root mean

squared error, the proposed approach produces the lowest

error in most cases.
The method proposed in this paper represents a par-

ticularization of the generalized method introduced at the

beginning. This generalized method can be used to train
other types of support vector machines. Furthermore, this

method is not limited to a particular number of error

functions or to a particular number of hyper-parameters.
Moreover, experimental results suggest that the proposed

method, if used along with a linear programming support

vector regression approach and a large-scale training

method, it produces its best results in large-scale
applications.

This research significantly advances the natural problem

of hyper-parameters selection in most of today’s SVR/
SVR-based methods. It does so by exploring a more effi-

cient LP-SVR formulation along with a nonlinear least

squares quasi-Newton strategy to minimize an estimate of
the true generalization error.

Acknowledgments The author P. R. P. performed part of this work
while at NASA Goddard Space Flight Center as part of the Graduate
Student Summer Program (GSSP 2009) under the supervision of
Dr. James C. Tilton. This work was supported in part by the National
Council for Science and Technology (CONACyT), Mexico, under
Grant 193324/303732 and mentored by Dr. Greg Hamerly who is
with the department of Computer Science at Baylor University.
Finally, the authors acknowledge the support of the Large–Scale
Multispectral Multidimensional Analysis (LSMMA) Laboratory
(www.lsmmalab.com).

References

1. Anguita D, Boni A, Ridella S, Rivieccio F, Sterpi D (2005)
Theoretical and practical model selection methods for support
vector classifiers. In: Support vector machines: theory and
applications, Springer, Berlin, pp 159–179

2. Anguita D, Ridella S, Rivieccio F, Zunino R (2003) Hyperpa-
rameter design criteria for support vector classifiers. Neurocom-
puting 55(1–2):109–134

3. Argáez M, Velázquez L (2003) A new infeasible interior-point
algorithm for linear programming. In: Proceedings of the 2003
conference on diversity in computing, TAPIA ’03, ACM, New
York, pp 12–14. doi:10.1145/948542.948545

4. Armijo L (1966) Minimization of functions having lipschitz
continuous first partial derivatives. Pac J Math 16(1):1–3

5. Blackard J, Dean D (1999) Comparative accuracies of artificial
neural networks and discriminant analysis in predicting forest
cover types from cartographic variables. Comput Electr Agric 24(3):
131–151

6. Cawley G (2006) Leave-one-out cross-validation based model
selection criteria for weighted ls-svms. In: Proceedings of the

Table 4 Comparison of the proposed algorithm with the following
methods: Grid Search [45], Pattern Search [41], Genetic Algorithms
[63], and Practical Selection [8]. The name of the data set
corresponding to the number given in the first column is given by

the following relationship: 1=MortPollution, 2=Bodyfat, 3=Betaplas-
ma, 4=Retplasma, 5=Autompg, 6=Housing, 7=Concrete, and
8=Abalone

Data set Grid S. [45] Pattern S. [41] Genetic A. [63] Practical S. [8] Proposed

RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time

1 51.09 2.18 s 48.22 15.4 s 49.04 6.1 s 63.85 0.01 s 39.48 91 s

2 0.011 24.1 s 0.011 81.8 s 0.011 109 s 0.017 0.02 s 0.011 74 s

3 172.3 33.2 s 184.7 644 s 169.7 182 s 185.3 0.01 s 146.7 241 s

4 254.9 32.3 s 259.0 68.5 s 261.9 182 s 251.5 0.02 s 238 77 s

5 4.543 72.0 s 4.625 122 s 4.657 410 s 4.740 0.02 s 3.777 115 s

6 4.989 157 s 3.681 698 s 5.032 469 s 9.339 0.07 s 3.632 313 s

7 28.50 885 s 28.56 2.96 h 28.55 27 m 28.74 0.33 s 6.547 23 m

8 1.777 1.53 h 1.792 5.28 h 1.772 3.9 h 1.819 3.13 s 1.761 59 m

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

http://dx.doi.org/10.1145/948542.948545

IEEE international joint conference on neural networks,
IJCNN’06, pp 1661–1668. doi:10.1109/IJCNN.2006.246634

7. Chang M, Lin C (2005) Leave-one-out bounds for support vector
regression model selection. Neural Comput 17(5):1188–1222

8. Cherkassky V, Ma Y (2004) Practical selection of svm parame-
ters and noise estimation for svm regression. Neural Netw 17(1):
113–126

9. Collobert R, Bengio S (2001) Svmtorch: support vector machines
for large-scale regression problems. J Mach Learn Res 1:143–160.
doi:10.1162/15324430152733142

10. Courant R, Hilbert D (1966) Methods of mathematical physics.
Interscience, New York

11. Dennis J, Schnabel R (1996) Numerical methods for uncon-
strained optimization and nonlinear equations. Society for
Industrial Mathematics, Philadelphia

12. Duan K, Keerthi S, Poo A (2003) Evaluation of simple perfor-
mance measures for tuning SVM hyperparameters. Neurocom-
puting 51:41–59

13. Fawcett T (2004) Roc graphs: notes and practical considerations
for researchers. Mach Learn 31:1–38

14. Fisher R (1936) The use of multiple measurements in taxonomic
problems. Ann Eugen 7(2):179–188

15. Forina M, Leardi R, Armanino C, Lanteri S (1998) PARVUS: an
extendable package of programs for data exploration, classifica-
tion and correlation. Institute of Pharmaceutical and Food Anal-
ysis Technologies, Genoa, Italy

16. Frank A, Asuncion A (2010) UCI machine learning repository.
http://archive.ics.uci.edu/ml

17. Gorman R, Sejnowski T (1988) Analysis of hidden units in a layered
network trained to classify sonar targets. Neural Netw 1(1):75–89

18. Hart P, Duda R, Stork D (2001) Pattern classification. Wiley,
New York

19. Haykin SS (2009) Neural networks and learning machines. Pre-
ntice Hall, Upper Saddle River

20. He Q, Wu C (2011) Separating theorem of samples in banach
space for support vector machine learning. Int J Mach Learn
Cybern 2(1):49–54

21. Hestenes M (1975) Pseudoinversus and conjugate gradients.
Commun ACM 18(1):40–43

22. Hui-ren Z, Pi-e Z (2008) Method for selecting parameters of least
squares support vector machines based on GA and bootstrap.
J Syst Simul 12:58. doi:cnki:sun:xtfz.0.2008-12-058

23. Ito K, Nakano R (2003) Optimizing support vector regression
hyperparameters based on cross-validation. In: Proceedings of the
IEEE international Joint Conference on neural networks, vol 3,
pp 2077–2082

24. Joachims T (1998) Text categorization with support vector
machines: learning with many relevant features. Machine learn-
ing ECML-98, Computer Science Department, University of
Dortmund, pp 137–142

25. Joachims T (1999) Making large-scale support vector machine
learning practical. In: Advances in kernel methods, MIT Press,
Cambridge, pp 169–184

26. Karasuyama M, Kitakoshi D, Nakano R (2006) Revised opti-
mizer of svr hyperparameters minimizing cross-validation error.
In: Proceedings of the IEEE international joint conference on
neural networks, IJCNN’06, pp 319–326

27. Karasuyama M, Nakano R (2007) Optimizing svr hyperparame-
ters via fast cross-validation using aosvr. In: Proceedings of the
IEEE international joint conference on neural networks, IJCNN
2007, pp 1186–1191

28. Karsaz A, Mashhadi H, Mirsalehi M (2010) Market clearing price
and load forecasting using cooperative co-evolutionary approach.
Int J Electr Power Energy Syst 32(5):408–415

29. Kay S (2006) Intuitive probability and random processes using
MATLAB, 1st edn. Springer, Berlin. doi:10.1007/b104645

30. Khemchandani R, Karpatne A, Chandra S (2012) Twin support
vector regression for the simultaneous learning of a function and
its derivatives. Int J Mach Learn Cybern, Springer, pp 1–13. doi:
10.1007/s13042-012-0072-1

31. Kinzett D, Zhang M, Johnston M (2008) Using numerical
simplification to control bloat in genetic programming. Simul
Evol Learn 5361:493–502. doi:10.1007/978-3-540-89694-4_50

32. Kobayashi K, Kitakoshi D, Nakano R (2005) Yet faster method to
optimize svr hyperparameters based on minimizing cross-vali-
dation error. In: Proceedings of the 2005 IEEE international joint
conference on neural networks, IJCNN’05, vol 2, pp 871–876.
doi:10.1109/IJCNN.2005.1555967

33. Kohavi R (1996) Scaling up the accuracy of naive-Bayes clas-
sifiers: a decision-tree hybrid. In: Proceedings of the second
international conference on knowledge discovery and data min-
ing, vol 7. Menlo Park, AAAI Press, USA

34. Lang K, Witbrock M (1988) Learning to tell two spirals apart. In:
Proceedings of the 1988 connectionist models summer school,
pp 52–59 (M. Kaufmann)

35. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based
learning applied to document recognition. Proc IEEE 86(11):
2278–2324. doi:10.1109/5.726791

36. Liu Z, Wu Q, Zhang Y, Philip Chen C (2011) Adaptive
least squares support vector machines filter for hand tremor
canceling in microsurgery. Int J Mach Learn Cybern 2(1):37–47.
doi:10.1007/s13042-011-0012-5

37. Lu Z, Sun J, Butts KR (2009) Linear programming support vector
regression with wavelet kernel: a new approach to nonlinear
dynamical systems identification. Math Comput Simul 79(7):
2051–2063. doi:10.1016/j.matcom.2008.10.011

38. Ma J, Theiler J, Perkins S (2003) Accurate on-line support vector
regression. Neural Comput 15(11):2683–2703. doi:10.1162/0899
76603322385117

39. McDonald G, Schwing R (1973) Instabilities of regression esti-
mates relating air pollution to mortality. Technometrics 15(3):
463–481. doi:10.2307/1266852

40. Mercer J (1909) Functions of positive and negative type, and their
connection with the theory of integral equations. Philos Trans R
Soc Lond Ser A (containing papers of a mathematical or physical
character) 209:415–446. doi:10.1098/rsta.1909.0016

41. Momma M, Bennett K (2002) A pattern search method for model
selection of support vector regression. In: Proceedings of
the SIAM international conference on data mining, SIAM, Phil-
adelphia, pp 261–274

42. Musa A (2012) Comparative study on classification perfor-
mance between support vector machine and logistic regression.
Int J Mach Learn Cybern, 1–12. doi:10.1007/s13042-012-
0068-x

43. Nierenberg D, Stukel T, Baron J, Dain B, Greenberg E (1989)
Determinants of plasma levels of beta-carotene and retinol. Skin
cancer prevention study group. Am J Epidemiol 130(3):511–521

44. Nocedal J, Wright S (1999) Numerical optimization. Springer,
Berlin. doi:10.1007/b98874

45. Ortiz-Garcı́a E, Salcedo-Sanz S, Pérez-Bellido Á, Portilla-
Figueras J (2009) Improving the training time of support vec-
tor regression algorithms through novel hyper-parameters
search space reductions. Neurocomputing 72(16):3683–3691.
doi:10.1016/j.neucom.2009.07.009

46. Osuna E, Castro O (2002) Convex hull in feature space for
support vector machines. In: Advances in artificial intelligence
IBERAMIA 2002, lecture notes in computer science, vol 2527,
Springer, Berlin, pp 411–419. doi:10.1007/3-540-36131-
6_42

47. Peng X (2010) Tsvr: an efficient twin support vector machine for
regression. Neural Netw 23(3):365–372. doi:10.1016/j.neunet.
2009.07.002

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

http://dx.doi.org/10.1109/IJCNN.2006.246634
http://dx.doi.org/10.1162/15324430152733142
http://archive.ics.uci.edu/ml
http://dx.doi.org/cnki:sun:xtfz.0.2008-12-058
http://dx.doi.org/10.1007/b104645
http://dx.doi.org/10.1007/s13042-012-0072-1
http://dx.doi.org/10.1007/978-3-540-89694-4_50
http://dx.doi.org/10.1109/IJCNN.2005.1555967
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1007/s13042-011-0012-5
http://dx.doi.org/10.1016/j.matcom.2008.10.011
http://dx.doi.org/10.1162/089976603322385117
http://dx.doi.org/10.1162/089976603322385117
http://dx.doi.org/10.2307/1266852
http://dx.doi.org/10.1098/rsta.1909.0016
http://dx.doi.org/10.1007/s13042-012-0068-x
http://dx.doi.org/10.1007/s13042-012-0068-x
http://dx.doi.org/10.1007/b98874
http://dx.doi.org/10.1016/j.neucom.2009.07.009
http://dx.doi.org/10.1007/3-540-36131-6_42
http://dx.doi.org/10.1007/3-540-36131-6_42
http://dx.doi.org/10.1016/j.neunet.2009.07.002
http://dx.doi.org/10.1016/j.neunet.2009.07.002

48. Penrose K, Nelson A, Fisher A (1985) Generalized body com-
position prediction equation for men using simple measurement
techniques. Med Sci Sports Exerc 2(17):189

49. Platt J (1999) Using analytic qp and sparseness to speed training
of support vector machines. In: Proceedings of the 1998 confer-
ence on Advances in neural information processing systems II,
MIT Press, Cambridge, MA, USA, pp 557–563

50. Quinlan J (1993) Combining instance-based and model-based
learning. In: Proceedings of the 10th international conference on
machine learning, pp 236–243

51. Ren Y, Bai G (2010) Determination of optimal svm parameters
by using ga/pso. J Comput 5(8):1160–1168. doi:10.4304/jcp.5.8.
1160-1168

52. Ripley B (2008) Pattern recognition and neural networks, 1st edn.
Cambridge University Press, Cambridge

53. Rivas-Perea P (2009) Southwestern US and northwestern mexico
dust storm modeling trough moderate resolution imaging spect-
roradiometer data: a machine learning perspective. Technical
report: NASA/UMBC/GEST graduate student summer program.
http://gest.umbc.edu/student_opp/2009_gssp_reports.html

54. Rivas Perea P (2011) Algorithms for training large-scale linear
programming support vector regression and classification. PhD
thesis, The University of Texas at El Paso

55. Rivas-Perea P, Cota-Ruiz J (2012) An algorithm for training a
large scale support vector machine for regression based on linear
programming and decomposition methods. Pattern Recogn Lett
(In Press). doi:10.1016/j.patrec.2012.10.026

56. Schölkopf B, Smola A, Williamson R, Bartlett P (2000) New
support vector algorithms. Neural Comput 12(5):1207–1245. doi:
10.1162/089976600300015565

57. Small K, Roth D (2010) Margin-based active learning for
structured predictions. Int J Mach Learn Cybern 1(1–4):3–25.
doi:10.1007/s13042-010-0003-y

58. Smets K, Verdonk B, Jordaan E (2007) Evaluation of performance
measures for svr hyperparameter selection. In: Proceedings of the
IEEE international joint conference on neural networks, IJCNN
2007, pp. 637–642. doi:10.1109/IJCNN.2007.4371031

59. Smola AJ, Schölkopf B (2004) A tutorial on support vector
regression. Stat Comput 14(3):199–222. doi:10.1023/B:STCO.
0000035301.49549.88

60. Stark H, Woods J (2001) Probability and random processes with
applications to signal processing, 3rd edn. Prentice-Hall, Upper
Saddle River

61. Torii Y, Abe S (2009) Decomposition techniques for training
linear programming support vector machines. Neurocomputing
72(4-6):973–984. doi:10.1016/j.neucom.2008.04.008

62. Vapnik V, Golowich S, Smola A (1997) Support vector method
for function approximation, regression estimation, and signal
processing. Adv Neural Inf Process Syst 9:281–287

63. Wang L (2005) Support vector machines: theory and applica-
tions, studies in fuzziness and soft computing, vol 177, Springer,
Berlin

64. Waugh S (1995) Extending and benchmarking cascade-correla-
tion. PhD thesis, University of Tasmania, Tasmania

65. Xiao JZ, Wang HR, Yang XC, Gao Z (2012) Multiple faults
diagnosis in motion system based on svm. Int J Mach Learn
Cybern 3(1):77–82. doi:10.1007/s13042-011-0035-y

66. Xiaofang Y, Yaonan W (2008) Parameter selection of support
vector machine for function approximation based on chaos
optimization. J Syst Eng Electr 19(1):191–197. doi:10.1016/
S1004-4132(08)60066-3

67. Xu Z, Huang K, Zhu J, King I, Lyu MR (2009) A novel kernel-
based maximum a posteriori classification method. Neural Netw
22(7):977–987. doi:10.1016/j.neunet.2008.11.005

68. Yeh I (1998) Modeling of strength of high-performance concrete
using artificial neural networks. Cement and Concrete research
28(12):1797–1808. doi:10.1016/S0008-8846(98)00165-3

69. Zhang JP, Li ZW, Yang J (2005) A parallel svm training algo-
rithm on large-scale classification problems. In: Proceedings
of the 2005 international conference on machine learning
and cybernetics, vol 3, pp 1637–1641. doi:10.1109/icmlc.2005.
1527207

70. Zhang L, Zhou W (2010) On the sparseness of 1-norm support
vector machines. Neural Netw 23(3):373–385. doi:10.1016/
j.neunet.2009.11.012

71. Zhang XQ, Gu CH (2007) Ch-svm based network anomaly
detection. In: Proceedings of the 2007 international conference
on machine learning and cybernetics, vol 6, pp 3261 –3266.
doi:10.1109/icmlc.2007.4370710

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy

1 23

Your article is protected by copyright and
all rights are held exclusively by Springer-
Verlag Berlin Heidelberg. This e-offprint is
for personal use only and shall not be self-
archived in electronic repositories. If you
wish to self-archive your work, please use the
accepted author’s version for posting to your
own website or your institution’s repository.
You may further deposit the accepted author’s
version on a funder’s repository at a funder’s
request, provided it is not made publicly
available until 12 months after publication.

	A nonlinear least squares quasi-Newton strategy for LP-SVR hyper-parameters selection
	Abstract
	Introduction
	On generalization error estimators
	On methods that find a set of hyper-parameters

	Error function minimization using nonlinear least squares
	LP-SVR formulation and hyper-parameters
	Model hyper-parameters selection criteria: error functions
	Multi-class and two-class problems
	Regression problems

	Implementation and considerations
	Nonlinear least squares quasi-Newton implementation
	Possible upper bounds and an initial set of hyper-parameters
	{\cal K}-fold cross validation
	Final algorithm

	Experimental results
	Data sets
	Methodology and results
	Comparison with other methods

	Conclusions
	Acknowledgments
	References

