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Abstract— We explore the effectiveness of Support Vector
Machines (SVM) for classification in a sparse data set. Non-
human primate models are utilized to analyze Alcohol Use
Disorders (AUDs); however, the resulting data have a limited
sample size. The challenge of low sample numbers and low repli-
cates are explored using a variety of optimization strategies for
feature extraction, including correlation, entropy, density, linear
support vector machines for regression (SVR), backward SVR,
and forward SVR. We investigate these approaches against the
backdrop of the relationship between alcohol consumption and
tibial bone mineral density. The results indicate that machine
learning (ML) can effectively be used in cases of low and
diverse biological data sets. The best relevance feature ranking
strategies are correlation, SVR forward, and SVR backward.

I. INTRODUCTION

The rapid adoption of Machine Learning (ML) approaches

to address issues in life science that do not respond well to

classic statistical methods opens tremendous opportunities

in data analytics. However, certain types of data sets are

not optimally shaped to support soft learning due to high

variance, low density, high dimensionality, and/or small

sample size.

The interdependent characteristics that underlay Alco-

hol Use Disorders (AUD) spans numerous biological and

behavioral disciplines and require deep understanding of

influencing factors, such as sex, income, genetics, behavior,

and co-morbidity with other disorders [1]. In human subjects

these individual characteristics have uneven prevalence, inter-

mittent responses, and low density, and represent the inherent

difficulties with establishing robust longitudinal models [2].

Animal models have been used to compensate for these de-

ficiencies, including the construction of a non-human primate

(NHP) macaque model of oral alcohol self-administration.

This model has the benefit of approximating human physi-

ology and behavior. In addition, recent work has identified

categorical levels of drinking severity, i.e., Low Drinkers

(LD), Binge Drinkers (BD), Heavy Drinkers (HD), and Very

Heaver Drinkers (VHD) [3], that are a reflection of AUD

severity in humans. This is particularly true with respect

to HD and VHD categories since they are associated with

problems of dependence and other brain pathology [4], [5],
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[6]. Unfortunately, one consequence of the NHP model is

that it has low throughput, which impacts sample sizes and

the effectiveness of ML-mediated analysis.

II. CLASSIFIER CHOICE IN SPARSE, UNDER

POWERED DATA SETS

While a range of ML applications have been used to ad-

dress non-linear, binary, and multi-class classification prob-

lems in life science, there is a gap in the literature about

the robustness of ML approaches in complex traits with

limited sample sizes. Indeed, we have successfully used

ML classification to identify strong behavioral contributors

to drinking categories, but only after aggregating numer-

ous animal cohorts [7]. There continues to be unknown

effects of low replicate number in high degree feature space

given behavioral data. We therefore examine the use of

support vector machines for regression as a control model

for prediction [8]. We use correlation, entropy, density, and

forward-backward selection of features as indicators of the

relationship between features and their relevance in modeling

bone damage in primates [9]. This includes a ranking of

feature selection methods to further identify which features

are more predictive. In addition, we have chosen a single

clinically relevant parameter to interrogate: bone mineral

density (BMD). The study of the relationship between al-

cohol consumption patterns and BMD is an important initial

step for understanding the effects of alcohol on bone.

In this paper we demonstrate that SVM can be employed to

effectively classify parameters in low-density space. Whether

the data is abundant or scarce, the mining and modeling of

biological data is non-trivial because there is a risk of finding

under-determined solutions or ill-posed models. This work

illustrates potential solutions to feature selection under these

constraints, and, consequently, demonstrate that the amount

of alcohol consumed in the first two hour period of ethanol

open access is the largest determining factor of BMD in

monkeys intoxicated early in life.

III. METHODS

A. Primate Subjects

Postmortem tibial BMD was studied in 68 monkeys from

the Oregon National Primate Research Center (ONPRC): 14

females and 54 males, representing Cynomolgus and Rhesus

monkeys. Each animal was assigned a drinking category

based on drinking behavior, see Table I [3].
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TABLE I

SUMMARY OF MONKEY COHORTS.

Cohort Name Total Females Males BD LD HD VHD
INIA Cyno 2 12 0 12 0 10 0 1
INIA Cyno 9 11 0 11 0 6 2 0
INIA Cyno 8 3 3 0 0 0 0 0
INIA Rhesus 7a 8 0 8 1 3 2 2
INIA Rhesus 7b 5 0 5 1 3 1 0
INIA Rhesus 4 10 0 10 4 5 1 0
INIA Rhesus 5 8 0 8 1 0 3 4
INIA Rhesus 6a 6 6 0 0 0 0 6
INIA Rhesus 6b 5 5 0 0 3 1 1
Total 68 14 54 7 30 10 14

B. Ethanol Self-Administration

All animals followed previously established procedures for

schedule-induced polydipsia [10], [11]. After an induction

period where all monkeys drank to levels that saturated

metabolic capacity elevating their Blood Ethanol Content

(BEC) over 50 mg/dl, equivalent to the 30th session of

1.5 g/kg ethanol, animals had concurrent access to 4% w/v

ethanol and a 22 h/d open-access to water and food in the

form of 1g of banana flavored pellets (Noyes), provided at

least three times a day during meals, and at least two hours

apart. The open-access phase comprised 12 months.

C. Drinking Features for Analysis

Five attributes are analyzed to explore optimal SVM

conditions for sparse data sets: drinking category, sex, age

at first intoxication [12], [13], maximum bout volume, and

ethanol consumption during induction. These produce a total

of 14 features, see Table II. For example, from the maximum

bout volume occurring during the first 120 minutes of daily

open-access, five features are extracted: average maximum

bout volume (μ), standard deviation of the maximum bout

volume (σ), median of the maximum bout volume, maximum

of the maximum bout volume (max), and minimum of the

maximum bout volume (min). This amount is also measured

as a fraction of what the animals drink. From this data six

features are extracted: average percentage of ethanol con-

sumed during induction (μ), median percentage of ethanol

consumed during induction, total sum of the percentage of

ethanol ingested during induction (Σ), standard deviation

of the percentage of ethanol ingested during induction (σ),

minimum percentage of ethanol consumed during induction

(min), and maximum percentage of ethanol consumed during

induction (max).

D. Estimation of Importance and Feature Ranking

Feature ranking is an approach to feature selection that

reduces the risk of poor performance and high complexity

[9]. Three methods are used to evaluate features based on in-

dividual relevance ranking: Pearson correlation, entropy, and

density. Three methods are also used to evaluate combined

relevance rankings based on the well-known support vector

machines for regression (SVRs) [8]: linear SVR, backward

SVR, and SVR forward.
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Fig. 1. Tibial bone mineral density by drinking category and sex. Drinking
categories are displayed along the horizontal axis: low drinker (LD), binge
drinker (BD), heavy drinker (HD), and very heavy drinker (VHD). No
females are reported as BDs. There is no significant difference between
drinking categories or sex.

1) Individual Relevance Ranking using Entropy: Entropy

is a measure of the amount of information that is contained in

a random variable or feature [14]. If a feature is categorical,

e.g., drinking category or sex, we expect entropy based on

the distribution of those variable. Sex represents a binary

category and low entropy, indicating high predictability. On

the other hand, the entropy of drinking category is more

evenly distributed and therefore has higher entropy and

lower predictability. Note that calculating entropy requires no

knowledge of the target variable Y , which makes this process

faster to compute, in comparison with Pearson correlation

coefficient, but of the same overall complexity: O(mn).

2) Individual Relevance Ranking using Density: High

density features are highly correlated with many other

variables, although not necessarily redundant [9], and may

be calculated using the differences of Pearson correlation

coefficients. This is important in the study of complex trait

disorders, such as AUD, where numerous factors impact

outcome [10], [3], [15], [7]. High density features may be

calculated as a cost of increased complexity, O(m2n), but

using computed averages and centered vectors leads to a

complexity of O(mn) in the average case.

3) Combined Relevance Ranking: SVRs have been exten-

sively developed to reduce the high complexity of learning

algorithms when kernel mappings of data are used [8] and in

problems related to classification [16], [17], [18]. Similarly,

they can be used for regression tasks with minor adjustments.

The complexity of finding a solution to the SVR optimization

problem, using the SMO algorithm with a linear kernel, is

O(m2n), without considering the cost of the grid search.

E. Feature Selection

We explore two major strategies for ranking sets of fea-

tures: forward selection and backward selection [9]. Back-

ward selection considers the set of all features first and

removes features that produce the smallest contribution. It is
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also computationally expensive, pushing the complexity of

SVR to O(m3n) due to the kernel function. And since the

process of having sets of n−1, n−2, . . . , 1 features selected

corresponds to a series that converges to n(n − 1)/2 =
O(n2), then the total overall complexity becomes O(m3n2).
This complexity does not consider the cost of grid search and

leave-one out cross validation.

The forward selection of features begins with an empty

set and adds individual features one by one, selecting the

feature that provided the best score. This process is fast at

the beginning since it starts with an empty set, however,

it could miss holistic relationships among features, and is

computationally expensive, with a complexity of O(m3n).

F. Computational Resources for Analysis

All computations were executed on Monkey Alcohol and

Tissue Research Resource (MATRR) [19] servers (four Intel

Xeon E5620 processors at 2.4 GHz, with 47 GB of RAM

and 1.7 TB storage). Statistical analysis and data processing

was completed using Python’s Pandas, NumPy, and SciPy

packages. For all ML algorithms we used Python’s Scikit-

Learn package.

IV. RESULTS AND DISCUSSION

The identification of features associated with behavioral

drinking patterns in a NHP open access drinking model are

used to explore the effectiveness of SVM and associated

feature selection models in low data space. Given several

cohorts of monkeys and data in the MATRR, the identifica-

tion of features that impact BMD are explored using a variety

of methods.

A. Tibial Bone Mineral Density

Average BMD of all samples is found to be μ = 0.376
g/cm2, with a standard deviation of σ = 0.049g/cm2.

Figure 1 depicts BMD broken down by gender and drinking

category, and suggests no apparent BMD differences between

drinking categories. Sex differences are also within the

standard deviation. There is likewise no statistical correlation

between BMD and other examined single features.

B. Feature Ranking

Each of the fourteen available features in our data set are

ranked using each of the ranking methodologies, see Table

II. However, given the small sample size, average rank may

be misleading. To establish a more robust ranking approach,

a Friedman test is performed [20]. The Friedman statistic is

determined to be χ2
F = 17.3143 with p = 0.1853, with a

level of significance of α = 0.05. Furthermore, the critical

difference δCD using the Nemenji’s test was calculated

to determine if two features are significantly different if

the corresponding average ranks differ [21]. The value of

the critical difference for a confidence level of α = 0.01
corresponds to δCD = 1.82. Using the δCD value we observe

that the top four features are not significantly different from

each other, but are significantly better than the rest of the

features, suggesting that the most contributing features are
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Fig. 2. Performance of feature sets using the R2 score. Pearson correlation
coefficient, SVR backward, and SVR forward score the highest among all
of the methods.

Drinking Category, Sex, Age at First Intoxication, μ of
Maximum Bout Volume, σ of Maximum Bout Volume.

Feature Testing

Relevant features are tested based on size-increasing sets

according to rank. The input to the algorithm is the data

set D and a vector r = [r1, r2, . . . , rn], where r1 is the

index of the best ranked feature and rn is the index of the

worst ranked feature. Note, however, that r is different for

each ranking methodology. E.g., consider the column entitled

“Pearson” in Table II, the corresponding r would be: r =
[3, 2, 6, 5, 4, . . . , 1]

We perform a traditional grid search to find the best

set of hyper-parameters {C, γ, ν} that produce the best 10-

fold cross validation R2 score. The search is conducted

in the logarithmic spaces C ∈ {2−5, 2−4, . . . , 215} and

γ ∈ {2−15, 2−14, . . . , 23}; and the linear space ν ∈
{0.05, 0.10, . . . , 0.95}. Then, with the best set of hyper-

parameters, ν−SVRs are trained with a leave-one-out (LOO)

cross validation strategy, which is proven to provide more

accurate error estimates in smaller data sets [22].

Results for all of the relevant feature ranking methods are

depicted in Figure 2, which plots all error vectors starting

with one feature. Note that since the first feature added,

i.e., the best, is distinct for every method, the initial score

varies. However, all converge to the same score once all

fourteen features are considered together. Ideally, we want

the set of features that achieves the highest score with

the smallest number of features. SVR forward and Pearson

correlation coefficient achieve their highest score with only

three features, while SVR backward performs highest with

six features.

In order to determine which features appear the most

frequently, we analyze which features are in the set that

produced the highest score for each method. Table III

presents a summary of which features are frequently part of

the best set of features. The table also presents a weighted

frequency count using the rank of each method. The rank

was determined as the best overall score of a given method

regardless of the number of features. From Figure 2 it can be
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TABLE II

RANKING OF INFORMATIVE FEATURES. EACH COLUMN SHOWS A RANKING METHODOLOGY. THE CRITICAL DIFFERENCE, δCD = 1.82 WITH

α = 0.01, SUGGESTS THAT THE TOP FIVE RANKED FEATURES ARE SIGNIFICANTLY BETTER THAN THE REST.

F Feature Pearson Entropy Density
Linear SVR SVR Avg.
SVR Backward Forward Rank

1 Drinking Category 14 11 4 8 6 12 9.16
2 Sex 2 13 5 13 13 1 7.83
3 Age at First Intoxication 1 6 2 7 7 2 4.16
4 μ of Maximum Bout Vol. 5 3 14 1 5 4 5.33
5 σ of Maximum Bout Vol. 4 2 12 3 3 11 5.83
6 Median of Maximum Bout Vol. 3 4 10 2 4 3 4.33
7 max of Maximum Bout Vol. 11 8 7 10 8 9 8.83
8 min of Maximum Bout Vol. 7 5 3 12 14 14 9.16
9 μ % of EtOH During Ind. 13 10 13 6 1 13 9.33

10 Median % of EtOH During Ind. 9 12 8 5 9 10 8.83
11 Σ % of EtOH During Ind. 6 7 9 4 2 8 6.00
12 σ % of EtOH During Ind. 10 1 11 9 10 6 7.83
13 min % of EtOH During Ind. 8 9 6 11 11 5 8.33
14 max % of EtOH During Ind. 12 14 1 14 12 7 10.00

TABLE III

ANALYSIS OF SETS OF FEATURES PRODUCING THE BEST SCORE.

COLUMN DATA IS FORMATTED AS b/r, WHERE b = 1 IF FEATURE IS

PART OF THE BEST SCORING SET; r IS THE METHOD RANK.

F Feature C H D
Lin. SVR SVR Freq.
SVR Bwd. Fwd. (wFreq.)

1 Drinking Category 1/4 1/6 1/1 3 (1.42)
2 Sex 1/2.5 1/6 1/2.5 3 (0.97)
3 Age at First Intoxication 1/2.5 1/4 1/6 1/2.5 4 (1.22)
4 μ of Maximum Bout Vol. 1/4 1/5 1/1 3 (1.45)
5 σ of Maximum Bout Vol. 1/4 1/5 1/1 3 (1.45)
6 Median of Maximum Bout Vol. 1/2.5 1/4 1/5 1/1 1/2.5 5 (2.25)
7 max of Maximum Bout Vol. 1/4 1 (0.25)
8 min of Maximum Bout Vol. 1/4 1/6 2 (0.42)
9 μ % of EtOH During Ind. 1/4 1/1 2 (1.25)

10 Median % of EtOH During Ind.
11 Σ % of EtOH During Ind. 1/4 1/5 1/1 3 (1.45)
12 σ % of EtOH During Ind. 1/4 1 (0.25)
13 min % of EtOH During Ind. 1/4 1 (0.25)
14 max % of EtOH During Ind. 1/6 1 (0.17)

determined that the best score corresponds to SVM backward

and the worst corresponds to Density.

Careful inspection of Table III reveals that, considering

the frequency count of the features, the two features that

are frequently part of the best sets of features are Median
of Maximum Bout Volume and Age at First Intoxication. On

the other hand, if we consider the weighted frequency count

which utilizes the rank, we observe that the top features are

Median of Maximum Bout Volume with a wFreq. = 2.25 and

three ties with wFreq. = 1.45.

Figure 3 depicts how two features, namely Median Maxi-
mum Bout Volume and Age at First Intoxication, interact with

each other in predicting BMD. The figure suggests that lower

BMD is associated with a median maximum bout volume

between 10 and 150 mL for young monkeys whose age is

between 1400 and 1700 days. The risk of having low BMD is

less for older monkeys of ages greater than 2400 days. These

two features do not appear to have a linear relationship in

a two-dimensional plane; however, using the kernel method

in SVRs, the possibility of having a linear relationship in a

higher-dimensional space is often assumed.

A similar analysis is shown in Figure 4. In this case the

two features analyzed are Median Maximum Bout Volume
and Total Sum of the Percentage of Ethanol Consumed
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Fig. 3. BMD values using Median Maximum Bout Volume and Age at First
Intoxication as predictors. Predicted BMD suggests that young monkeys are
at higher risk of low BMDs if their Median Maximum Bout Volume is in
the range of 10 to 150 mL.

During Induction. The relationship between these two fea-

tures appears to be quasi-linear, suggesting a more evident

dependence or correlation. From the figure, we can observe

that if the Median Maximum Bout Volume is less than 100

mL then there is a higher risk of low BMD for almost any

sum of the percentage of ethanol, while the risk decreases

in the opposite direction.

V. CONCLUSIONS

Several predictive features for bone mineral density were

identified using relevance feature ranking techniques. These

attributes are both categorical and quantitative, and include

Median of Maximum Bout Volume, μ of Maximum Bout
Volume, σ of Maximum Bout Volume, Age at First Intoxica-
tion, and Total Sum of the Percentage of Ethanol Consumed
During Induction

We also analyzed the complexity of the feature ranking

algorithms and observed that the Pearson correlation coef-

ficient is significantly less expensive and performs well for

up to three features; after that, Pearson does not consider the
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Fig. 4. BMD values using Median Maximum Bout Volume and Total Sum
of the percentage of Ethanol During Induction. Results suggest that Median
Maximum Bout Volume provides a higher correlation to BMD than the
percentage of Ethanol intake during Induction.

interdependence of the data. The SVR Backward selection

strategy was the best method, since it considers all of the

features at once and their relationship as a group; however,

it is more expensive than Pearson’s correlation coefficient.

Encountering low sample sizes in certain biological data

sets is inevitable, and careful application of optimization

techniques can ensure that these sets maintain their utility.

This approach also demonstrates an alternative to sentiment

analysis [23].
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