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Abstract— Novel deep learning and machine translation
techniques have greatly advanced the field of computational
linguistics, enabling us to find meaningful latent spaces
for text analysis. While several embedding techniques exist
for words, sentences, and entire documents, the potential
applications are still being explored. In this paper we
present the impact of top-performing sentence embedding
methodologies on the accuracy of a neural model trained to
assess the quality of English sentences. We focus our efforts
in the methodologies called Language Agnostic SEntence
Representation (LASER), Sentence to Vector (S2V), and
Universal Sentence Encoder (USE) to observe their ability
to capture information related to sentence quality. Our study
suggests that these state-of-the-art sentence embeddings are
unable to capture sufficient information regarding sentence
correctness and quality in the English language.
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1. Introduction

The last few years have seen remarkable improvement
in sentence embedding algorithms intended to capture lin-
guistic properties, with embeddings successfully applied to
document analysis and categorization, as well as document
sentiment and tone analysis. Some of the most notable efforts
include Google’s Universal Sentence Encoder (USE) for
English [1], which uses a deep averaging neural network
to encode sentences, and transfer learning at the word and
sentence level to achieve solid performance on various NLP
tasks. Another successful approach is Sent2Vec [2], which
executes both supervised and unsupervised learning over
compositional n-gram features to learn sentence embed-
dings. Facebook also produced an embedding methodology,
Language-Agnostic SEntence Representations (LASER) [3].
LASER uses encoder-decoder architectures inspired by neu-
ral machine translation models, producing sentence embed-
dings that are language agnostic. Recent studies [4] have
shown that these three embeddings outperform others in
assessments concerning the preservation of linguistic prop-
erties in sentence representations. These research develop-
ments were considered in our group’s most recent study,

which is concerned with assessing the quality of English
sentences according to five specific rules [5]. It is worth
noting that these rules, such as the proper application of
subjects and verbs in a sentence, or the stylistic preference
for brevity, can be highly subjective. However, we believe
these rules capture fundamental elements of style and gram-
mar, serving as a strong indicator for proper writing and
technique.

Our study evaluates the ability of these top-performing
sentence embeddings to capture sentence correctness and
quality. Using a dataset of English sentences that contains
mixed levels of writing proficiency, we trained a neural net-
work to classify properly- and poorly-constructed sentences,
documenting the impact of each embedding methodology on
the overall performance of the network. Our study indicates
that these state-of-the-art methodologies, USE, Sent2Vec,
and LASER, are unable to embed enough information re-
garding sentence correctness and quality.

The remainder of this paper is organized as follows:
Section 2 introduces the current state of sentence embedding
in the research community, as well as the distinct method-
ologies of USE, Sent2Vec, and LASER. Section 3 explains
the implementation of these sentence embeddings in the
context of our neural model. Section 4 explains the impact
of using these sentence embeddings on the accuracy of our
neural model. Finally, Section 5 concludes our paper with a
discussion of findings and plans for future work.

2. Embedding Methodologies

Sentence embedding is critical to the success of NLP
applications, but few individuals understand exactly how
these embeddings, and the linguistic properties they capture,
actually impact downstream tasks. Furthermore, different
embedding schemes can produce completely different rep-
resentations. These representations may be similar insofar
as having the ability to conduct limited analysis or cate-
gorization of sentences. But the actual linguistic properties
captured in these vectorized representations may be quite
different, making a lot of experimentation with embeddings
blind trial and error. Now that strong performance base-
lines have been established for many NLP applications [6],
researchers and developers have increasingly turned their



attention to probing tasks that assess linguistic properties
captured in different sentence embeddings. Analyzing tense,
clause dependency, and other linguistic properties is a great
way to determine the strength of a representation, and it
gives us a better understanding of how exactly these top-
performing embedding schemes work [7]. In the following
paragraphs, we will examine the methodologies of USE,
Sent2Vec, and LASER, all of which are considered to be
state of the art [4].

Google’s Universal Sentence Encoder (USE) has two
implementations, each modeled to achieve a different design
goal. One makes use of a transformer architecture, targeting
high accuracy at the cost of additional complexity and
resource consumption, and the other is formulated as a deep
averaging network (DAN), targeting speed and quick infer-
ence at the cost of accuracy [1]. For our research, we used
the DAN encoder, which takes a tokenized string as input
and produces a 512-dimensional sentence embedding. This
output embedding is then averaged with other embeddings
produced by the encoder and passed into a feedforward deep
neural network. Averaging may sacrifice accuracy, but the
DAN encoder still manages to achieve strong performance
baselines on a variety of NLP tasks, and even matches
or outperforms the transformer encoder in some unique
cases. Furthermore, the DAN encoder operates efficiently, as
expected. It’s compute and memory usage is O(n), whereas
the transformer encoder is O(n?), making it a strong choice
for an application’s encoder.

Sent2Vec can be thought of as a natural extension of
tools like FastText and Word2Vec; however, the goal is to
vectorize word sequences, not just words. With Sent2Vec,
sentence embeddings are produced by averaging the source
word embeddings of the sentence’s constituent words, with
source embeddings including not only unigrams but also n-
grams present in the sentence [2]. Depending on the imple-
mentation, this results in either a 600- or 700-dimensional
embedding. This approach was inspired by simpler models
like matrix factorization in an effort to exploit the fact
that they are computationally inexpensive, allowing them
to efficiently tackle larger sets of data. With this design
goal in mind, Sent2Vec successfully achieves O(1) vector
operations per word processed, making it scalable, efficient,
and therefore another strong, practical encoder.

Lastly, Facebook’s Language Agnostic SEntence Rep-
resentation (LASER) is inspired by the encoder-decoder
architectures of neural machine translation models. LASER
uses a single, shared encoder that accepts sentences in any
of 93 languages as input and maps them to a point in
high-dimensional space. The final representation is a 1,024-
dimensional vector, with the goal being a universal language
capable of representing sentences from different languages,
though identical in meaning, in a vectorized representation

that is virtually the same. This vectorized representation is
then used as input for the decoder, along with a specifi-
cation regarding the desired output language. LASER was
recently shown to embed more linguistic information than
its competitors [4], outperforming them on 17 out of 22
SentEval tasks. With the highest dimensional representation,
these embeddings naturally take a little longer to process.
However, LASER is still capable of processing roughly 2000
sentences per second on a GPU, making it another excellent
embedding tool.

3. Models Implementation and Experi-
ment Design

The sentence embedding methodologies discussed in the
previous section are applied in a dataset that aims to assess
the quality of a sentence using non-trivial rules in the English
language.

3.1 Rules

There are well-known rules that make a sentence a good
sentence. In our research [5], we focused on the following
five rules:

1) Subjects. The subject must be the main character, not
actions expressed as abstract nouns.

2) Verbs. The important actions in the sentence should
be verbs, not abstract nouns.

3) Introductory Phrases. Introductory phrases in a sen-
tence (if any) should follow rules 1 and 2, and should
not be too long; around five words is acceptable.

4) Nouns. Strings of consecutive nouns (three or more)
should be avoided to preserve sentence clarity.

5) Conciseness. Words that mean little or nothing, words
that repeat the meaning of other words, words implied
by other words, should all be avoided.

These rules have been used by our experts to evaluate
sentences and create a dataset of sentences with these quality
markers.

3.2 Dataset

Due to the natural complexities of the English language,
the rules previously mentioned are nearly impossible to
define in a precise manner without falling into endless excep-
tions; for this reason we created a dataset to train machine
learning algorithms to model such non-trivial rules. The data
comes from college students writing after the removal of all
personal identification data. Our experts observed a sentence
and evaluated it on the five rules. The average length of the
sentences in the dataset is 110 words, and the vocabulary
size is 73,140. The sentences can be visualized using tools
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Fig. 1: Two-dimensional t-SNE visualization of Sent2Vec
embeddings. Clear dots are correct sentences and dark dots
are sentences that violate rule three.

such as t-SNE over the embeddings methodologies discussed
before.

3.3 Sentence Embeddings and Visualization

A popular visualization tool for high-dimensional data is
t-SNE [8]. This algorithm can find optimal ways to display
data in low-dimensional spaces. It is typically used to display
data in two dimensions to see if there are clear clusters of
data or separability of labeled groups.

Here we used t-SNE to display sentences. First, Fig. 1
shows the sentence embeddings produced using Sent2Vec
projected down to two dimensions. The figure shows no
discernible separation between sentences that do or do not
violate the third rule on Introductory Phrases.

Similarly, Fig. 2 depicts the embedding space produced
by the LASER methodology encoded in two dimensions.
As can be seen, there are no obvious groupings of correct
or incorrect sentences on rule number four about Nouns.

However, Fig. 3 shows distinct data groups when using
the USE algorithm. This two-dimensional representation
displays several groups. Unfortunately, these groups are not
directly related to sentence quality. It is very likely that
these groups are related to topical sentence information;
but this remains a conjecture at this point, and will require
further topical classification of our sentence dataset, which
goes beyond the scope of this research. The sentences in
Fig. 3 correspond to the assessment of the fifth rule about
Conciseness.

Note that although sentences can be visualized in two
dimensions using t-SNE, the full high-dimensional latent
space is the object of our study. We discuss this next in

LASER on Rule 4

30 1

20 A

10 A

Second t-SNE dimension

- ‘30 —'2 0 - iO 6 1I0 2I0 3|0 4IO
First t-SNE dimension
Fig. 2: Two-dimensional t-SNE visualization of LASER
sentence embeddings. Clear dots are correct sentences and
dark dots are sentences that violate rule four.

USE on Rule 5

40

N A -
N

Second t-SNE dimension
o

—30 1 ®

—40

—’30 —‘20 —IIlO (’J 10 2’0 3‘0
First t-SNE dimension
Fig. 3: Two-dimensional t-SNE visualization of USE sen-
tence embeddings. Clear dots are correct sentences and dark
dots are sentences that violate rule five.

the context of dense neural networks.

3.4 Dense Neural Networks for Quality Assess-
ment

The sentence embeddings vary in methodology and in the
dimensions into which they encode. USE encodes into 512
dimensions; LASER encodes into 1,024 dimensions; and
Sent2Vec can encode into 600 or 700 dimensions depending
on which model is used. Fig. 4 on the left depicts a
variable latent space corresponding to any of the embedding
methodologies.

The right hand side of Fig. 4 depicts three dense layers
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Fig. 4. Sentence embeddings are connected to dense layers.
The number of layers is treated as a hyper-parameter and is
chosen through a cross-validated grid search.

of fully connected neural networks, each with 256, 128,
and 64 neurons, respectively. These three simple layers are
treated as a hyper-parameter that needs to be optimized,
meaning that the best number of layers is determined for
each methodology. As will be seen in the next section, in
the simplest case the dense network will have a single layer
of 64 neurons, or in the more complex case it will have the
complete three layers as depicted in the figure.

The experiments consist of embedding our sentence
dataset using each different methodology, i.e., LASER, USE,
and Sent2Vec. Then, we find the dense architecture that will
produce the best results using 6-fold cross validation. Once
the best architecture is determined, the balanced accuracy is
estimated using 10-fold cross validation.

4. Evaluation Results and Discussion

Table 1 shows the results of applying 10-fold cross
validation to the problem of evaluating the balanced accuracy
rate for each of the methodologies that are the subjects of
this study.

In all of our experiments, the accuracy rate reported
corresponds to the Balanced Accuracy defined as follows:

TP TN
Acc= [+ 20 )2
cc <P+N)/

where TP is the count of predicted true positives, P is
the count of positives, T'N is the count of predicted true
negatives, and N is the count of negatives.

From Table 1 we can observe all the variations of
Sent2Vec depending on the dataset on which the embedding
model was trained. The best scores are shown in bold
font. For rules one and four, the best embedding model
was Facebook’s LASER embedding method. For rules two
and three, Sent2Vec is the best methodology using Toronto
Books Unigrams and Twitter Bigrams data, respectively. For
rule five, Google’s USE reported the highest performance.

Looking at the aggregated statistics across rules and
methodologies in Table 1, we can observe that the rule
that produces the highest accuracy is the fifth rule on
Conciseness. On the other hand, the top three methodologies
for embedding across all rules are, Sent2Vec (trained on
Twitter Bigrams), USE, and LASER.

The next logical step in the experimentation process was
to test combinations of the top methodologies in groups of
two. The combination is achieved using a simple concatena-
tion of embeddings. For example, if the embedding produced
by USE and LASER for the i-th sentence is defined as
xUSE € RP1Z and xIASER ¢ R1024) regpectively, then we
can define the concatenation as follows:

91(3) = [xUSE xLASER)T
where gs is simply a reference to the third group formed.
All the groups formed are shown in Table 2.

From Table 2, we can see that the best pair of method-
ologies combined is USE and LASER when considering
the aggregated statistic. With respect to the rule that yields
the best performance, it can be seen that the fifth rule on
Conciseness is the one that is classified better. Notice that
the same procedure of selection of the best dense architecture
is followed, and the results reported are cross-validated.

Table 3 presents the results of the final experiment in
which we combine the top three methods into a single latent
vector. The purpose is to examine the capabilities of this
combination to perform a quality assessment. From the table
we can see that the balanced accuracy is the highest for rule
five. It can be easily seen that all the results are very close
to random change predictions, that is, balance accuracy rates
close to 0.5. The only rule that is modeled slightly better than
random chance is the rule of Conciseness. It can be argued
that longer sentences, which may have greater probabilities
of being labeled as violating the Conciseness rule, are more
easily detected than the other quality rules.

While these embedding methodologies have been proven
to preserve lexical information [4] based on the empirical
evidence shown here, we can make the claim that these state-
of-the-art methodologies are unable to capture and encode
enough information related to the quality of a given sentence.

Furthermore, simple combinations of the top performers
are still not able to perform significantly better than random
chance, which is problematic. This suggests that the sentence
quality assessment of non-trivial and subjective rules on the
English language is a problem that has not been solved.
More research is needed in the embedding of sentences for
purposes of quality assessment [5].

We want to acknowledge that the top performers we
studied here, USE [1], LASER [3], and Sent2Vec [2],
have excellent performance in many other language-related



Table 1: Cross-validated accuracy of individual methodologies on the problem of sentence quality assessment.

Methodology Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Average
Algo Dataset Acc o Acc o Acc o Acc o Acc o Acc o
Wiki Unigrams | 0.484 0.03 0.499 0.04 0487 0.03 0489 0.02 0.533 0.05 | 0.498 0.03
Wiki Bigrams 0.509 0.05 0497 0.02 0.503 0.04 0499 0.04 0.515 0.05 | 0.505 0.04
S2Vec Toronto Big. 0.502 0.02 0489 0.03 0.504 0.03 048 0.01 0.522 0.05 | 0.501 0.03
Toronto Unig. 0.498 0.04 0.516 0.05 0.497 0.04 0499 0.02 0.519 0.04 | 0.506 0.04
Twitter Unig. 0.490 0.02 0.504 0.04 0.502 0.04 0.502 0.02 0.531 0.04 | 0.506 0.03
Twitter Big. 0.498 0.01 0.505 0.03 0.509 0.04 0483 0.03 0.537 0.04 | 0.506 0.03
USE Web-Sources 0.508 0.03 0488 0.03 0.501 0.02 0499 0.04 0.546 0.08 | 0.509 0.04
Laser  UN Corpus 0.528 0.056 0.510 0.05 0487 0.02 0.534 0.05 0.538 0.04 | 0.520 0.04
Rule Average 0.502 0.03 0.501 0.03 0.499 0.03 0499 0.03 0.530 0.05

Table 2: Cross-validated accuracy of grouped methodologies by pairs for the problem of sentence quality assessment.

Methodology Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Average
Group  Algorithms Acc o Acc o Acc o Acc o Acc o Acc o
g S2Vec + USE | 0.503 0.02 0.498 0.03 0482 0.03 0509 0.02 0.529 0.03 | 0.504 0.02
g S2Vec + Laser | 0.499 0.01 0.517 0.04 0.498 0.05 0484 0.03 0.545 0.04 | 0.509 0.02
g® USE + Laser 0.528 0.04 0484 0.04 0498 0.01 0.514 0.03 0.532 0.06 | 0.511 0.02

Rule Average \ 0.510 0.03 0.500 0.04 0.493 0.03 0.502 0.03 0.535 0.05 \

Table 3: Cross-validated accuracy of the top three methodologies combined for sentence quality assessment.
Methodology | Rule ! Rule 2 Rule 3 Rule 4 Rule 5

Average

Algorithms ‘ Acc o Acc o

Acc o

Acc o Acc 0 | Acc o

S2Vec + USE + Laser ‘ 0.514 0.04 0.514 0.03 0.499 0.05

0.503 0.03 0.525 0.05‘0.511 0.01

applications. This is mainly because they have been trained
using traditional and novel machine translation techniques.
Machine translation has paved the way to solve other excit-
ing problems in sentence analysis [9], [3], [10], [11], [12],
[13]. However, a recent study [14] has shown that you can
do many things when embedding a sentence into a vector,
but many of these are not related to its quality.

In machine translation tasks, one usually tries to convey
meaning and important aspects of the sentence; however,
sentence quality is language-dependent and quality indica-
tors, such as the ones we studied here, tend to be discarded.
Nonetheless, according to Conneau et.al. [14], even machine
translation-inspired methods are able to preserve sentence
length information based on the number of words, which
is congruent with our findings in Tables 1, 2, and 3,
where the Rule 5 yields the best average accuracy. Since
Rule 5 is related to conciseness, one can make the case
that conciseness is directly related to sentence length; this
would explain such results. For completeness, Fig. 5 shows
the t-SNE-induced two-dimensional representation of the

combined latent spaces for Rule 5, and the corresponding
cross-validated receiver operating characteristic (ROC) curve
analysis in Fig. 6. The corresponding cross-validated area
under the curve (AUC) is of 0.58, which is slightly above
random chance.

5. Conclusions

We have examined the top sentence embedding method-
ologies at the time of writing this paper with the purpose
of assessing the quality of English sentences. Quality is
measured according to five non-trivial and rather subjective
rules modeled using machine learning. The top method-
ologies, Sent2Vec, USE, and LASER, are used to produce
sentence embeddings and then classify sentences that have
been tagged by experts that formed a dataset. The classi-
fication strategy uses the embeddings to train dense neural
networks of different sizes to establish the baseline accuracy
of each embedding strategy. Then groups of the top per-
forming embeddings are combined to analyze the combined
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Fig. 5: Two-dimensional t-SNE representation on rule five.

S2Vec + USE + Laser ROC on Rule 5
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Fig. 6: Cross-validated ROC analysis on rule five using the
three top sentence embedding methods.

performance. Experimental results suggest that these top
performers are unable to embed enough information related
to sentence quality, showing performances not significantly
higher than random chance.

Further work will include non-linear combinations of
these embeddings and the reproduction of the original em-
beddings, but trained specifically for the purpose of quality
assessment rather than machine-translation purposes. Sim-
ilarly, we will reproduce the models presented in the top
performers and implement them for the sentence quality
assessment rather than machine translation.

Code to reproduce our experiments can be found in this
Google Colaboratory: http://marist.ai/sent—emb
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