
Accelerating the Training of an
LP-SVR over Large Datasets

Pablo Rivas[0000−0002−8690−0987]

Computer Science, Baylor University, Waco, Texas, USA
Pablo Rivas@Baylor.edu

Abstract. This paper presents a learning speedup method based on
the relationship between the support vectors and the within-class Ma-
halanobis distances among the training set. We explain how statistical
properties of the data can be used to pre-rank the training set. Then
we explain the relationship among the pre-ranked training set indices,
convex hull indices, and the support vector indices. We also explain how
this method has better efficiency than those approaches based on the
convex hull, especially, at large-scale problems. At the end of the paper
we conclude by explaining the findings of the experimental results over
the speedup alternative.

Keywords: Support vector machines for regression · Linear program-
ming · Big data sets.

1 Introduction

Support Vector Machines for Regression (SVRs) are popular option for learning
to predicting a real-valued target given some training data. Their most common
applications include predicting popularity of online videos [27], forecasting wind
speed [25], energy consumption prediction [32], or forecasting rainfall [16]. SVRs
can be posed in different ways motivated by different problems. For instance,
ε − SVR was an attempt to provide flexibility to an inflexible SVR solution by
allowing the SVR to make mistakes; any mistakes beyond ε would start being
penalized [4]. This parameter needs to be set up experimentally by observing the
data and determining what amount of error can be tolerated in proportion to the
observed target data. However, the value of ε is very likely to vary from problem
to problem and its relationship with the support vectors is not intuitive; the
ν−SVR was introduced to solve this problem [26]. Its parameter ν provides the
necessary meaning with respect to the support vectors (SVs) and is consistent
from problem to problem; the ν − SVR does not eliminate the parameter ε
but removes the requirement of the user to provide it because it is introduced
as part of the optimization problem and is calculated automatically. There are
many other SVRs motivated by different issues. In this paper we will focus
on the formulation of our earlier work [24], which aims to address large-scale
training of a linear programming SVR (LP-SVR) based on the solution of small
LP problems. Our formerly proposed algorithm has been mathematically proven

2 P. Rivas

−2 0 2 4 6

−2

0

2

4

6

x
1

x
2

Convex Hull, SVs, and Max Mahalanobis Distance

Class 1
Class 2
Convex Hull Class 1
Convex Hull Class 2
Support Vectors
k=8 Max. Mahalanobis Dist. |

Fig. 1. Relationship between convex hull and maximum Mahalanobis distance for the
two class problem. Here it is shown the original separable two class problem, class
convex hull, support vectors, and k = 8 maximum Mahalanobis distance samples.
Both SVs and Convex Hull match the k = 8 maximum Mahalanobis distance samples.

to converge, but the training process is still costly in proportion to the number
of samples, N . This motivates the exploration of alternatives for speeding up the
learning process. In this paper, we propose using a distance measure for ranking
the training set and providing a sequence in which the data could be trained for
speeding. To achieve the speed up, the data is ranked according to its distance
to the class mean.

It is well known [1, 9, 11, 13, 19, 28, 29, 33] that in classification tasks, those
data points closer to the decision boundaries (i.e., convex hull of the data class)
are more likely to be support vectors, as illustrated in Figure 1 with bold circles.
Figure 1 depicts the relationship between convex hull and maximum Mahalanobis
distance (MD) for an arbitrary two class problem. The figure shows the convex
hull of each class, the SVs that define the separating hyperplane, and the eight
samples having the maximum MD from their class center. Note that both SVs
and convex hull match the eight samples with maximum MD.

Vapnik [28] improved the speed of his learning method by considering only
those variables on the boundaries of the feasible region instead of considering
all the data, which allowed computational tractability of some problems. Then
Joachims [9] defined a heuristic approach to identify variables at boundaries
based on Lagrange multiplier estimates. Later, Bennett, et al. [1] posed the
problem of finding the optimal separating hyperplane using the distance between
class convex hulls. A similar concept was followed by Keerthi, et al. [11] in 2002,
by Osuna, et al. [19] in 2003, and by Zhenbing, et al. [13] in 2010. In 2013, Wang
et al. [29], describe an approach to calculate distances to the convex-hull to
improve a particular kind of model known as online SVMs. Gu et al. in 2018 [8],
proposed another convex-hull approach by directly calculating it and ranking

Accelerating the Training of an LP-SVR over Large Datasets 3

data samples for naive versions of `1 and `2 SVMs. Most recently, in 2020, Chen
et al. [3], provided an entire model based on Mahalanobis distances that are
part of the learning process of a twin SVM formulation; such work has a similar
motivation to our early work in 2011 [23]; however, they focus on an SVM model
that incorporates sample selection into the learning process.

In this paper we introduce an approach to accelerate the training of an LP-
SVR, specifically, which uses a probabilistic argument and can be applied to
other flavors of SVRs. It is unique in that it aims for a specific flavor of SVR
and that it can easily be extended to other models with relative training speed
improvements. This paper is organized as follows: Section 2 introduces the back-
ground information for an LP-SVR, convex hull, and Mahalanobis distances.
Section 3 describes our experimental results, while Section 4 addresses some
computational concerns of the proposed approach. Conclusions are drawn in
Section 5.

2 Within-Class Distances for Learning Speed Up

In the following discussion we assume that our training data Tφ = {xi, di}Ni=1

has been taken to the kernel-induced feature space; x = [x1, x2, . . . , xM] is a
feature vector in RM , and d ∈ R is the target output.

2.1 LP-SVR

In this research we are training the following LP-SVR (see [24] for details):

min
α+,α−,b+,b−,ξ,u

∑N
i=1

(
α+
i + α−i + 2Cξi

)

s.t.


−
∑N
i=1(α+

i − α
−
i)k(xj ,xi) . . .

−b+ + b− − ξj + uj = ε− dj∑N
i=1(α+

i − α
−
i)k(xj ,xi) . . .

+b+ − b− − ξj + uj = ε+ dj
α+
j , α

−
j , b

+, b−, ξj , uj ≥ 0

for j = 1, 2, . . . , N,

(1)

where the kernel mapping k(xi,xj) : X (N×M)×(M×N) 7→ HN×N . Then, assume
that the slack variables ξi, ξ

∗
i can be expressed as simply 2ξi (e.g. ξiξ

∗
i = 0). Then,

let us introduce a slack variable u to get rid of the inequalities in the original
SVR formulation [24]. As a consequence of these assumptions,

Problem (1) can be posed as the linear programming problem in its canonical
form. To do so, one can define the following equalities:

A =

(
−K K −1 1 −I I
K −K 1 −1 −I I

)
, (2a)

b =

(
1ε− d
1ε+ d

)
, (2b)

4 P. Rivas

z =
(
α+ α− b+ b− ξ u

)T
, (2c)

c =
(
1 1 0 0 2C 0

)T
, (2d)

where A ∈ R(2N)×(4N+2), b ∈ R2N , z, c ∈ R4N+2. If we use the above equalities,
then problem (1) is identical to the canonical form, and we can claim that the
problem has been posed as an LP problem.

We claim that problem (1) is an original formulation for LP-SVR. In compar-
ison with the ν−LPR formulation by Smola, et al. [26] problem (1) (i) uses the
canonical formulation, (ii) computes b, and u implicitly, (iii) does not compute
ε implicitly, (iv) does not require the parameter ν, (v) promotes efficiency in the
sense of using only one ξ, and (vi) is a lower dimensional problem.

In comparison with Mangasarian, et al. [14], problem (1) (i) uses the canon-
ical formulation, (ii) computes b implicitly, (iii) does not compute ε implicitly,
and (iv) does not require the parameter µ. By (iii) and (iv) we provide the ex-
perimenter with more control of the sparseness of the solution [31]. In this case
sparseness means fewer number of support vectors.

Similarly, Problem (1) in comparison to Lu, et al. [18] our LP-SVR formula-
tion (1) (i) uses the canonical formulation and (ii) computes b implicitly. By (ii)
the linear program (LP) size is reduced by a factor of N2 +N .

In comparison with the `1−norm LP-SVR formulation by Zhang, et al. [31]
problem (1) does not require parameter δ and is more efficient in several ways: (i)
uses only one ξ, (ii) avoids penalization of b, (iii) reduces computational efforts
by forcing positivity in u which reduces the LP problem size by 2N2 + 2N , and
(iv) is a smaller problem.

Using equalities (2a)-(2d), we can obtain the dual problem of (1) as follows:

max
λ

bTλ

s.t.

{
ATλ + s = c

s ≥ 0,

(3)

which is equivalent to the dual of a linear programming problem, where λ is
a vector of dual variables defined over R2N , and s is a slack vector variable in
R4N+2.

Similarly, for the primal (1) and dual (3), the KKT conditions are defined as
follows:

ATλ + s = c, (4a)

Az = b, (4b)

zisi = 0, (4c)

(z, s) ≥ 0, (4d)

for i = 1, 2, . . . , n,

where the equality zisi implies that one of both variables must be zero. This
equality will be referred to as the complementarity condition. Note that the

Accelerating the Training of an LP-SVR over Large Datasets 5

KKT conditions depend on the variables (z,λ, s), and if the set of solutions
(z∗,λ∗, s∗) satisfy all the conditions, the problem is said to be solved. The set
(z∗,λ∗, s∗) is known as a primal-dual solution.

2.2 Definitions

Definition 1 (Support Vectors) Let T = {xi, di}Ni=1 be a training set; let z

be a solution to problem (1); and let dj ≡ f (xj) =
∑N
i=1

(
α+
i − α

−
i

)
k (xi,xj) +

(b+ − b−) be the regression function for problem (1). Then,

1. VS = {xi : di − ε < f(xi) < di + ε} defines the set of Saturated Support
Vectors (SSVs).

2. VE = {xi : f(xi) = di + ε, or f(xi) = di − ε} defines the set of Exact
Support Vectors (ESVs).

3. VN = {xi : f(xi) < di+ε, or f(xi) > di−ε} defines the set of Non-Support
Vectors (NSVs).

4. Vα = {xi : αi 6= 0} defines the set of Sparse Vectors (SPVs).
5. N = |VS |+ |VE |+ |VN |.
6. S = VS ∪ VE, means that the union of the SSVs and the ESVs is the set of

Support Vectors (SVs).
7. A = {αi : αi 6= 0} denotes the set of Non-zero Coefficients of the decision

function and of problem (1).

2.3 Background

It is well known that SVR and support vector machines (SVM) formulations do
not make assumptions about the probability distribution of the data. Nonethe-
less, each class ωj , should have a conditional class distribution p(x|ωj), where
x ∈ X ⊆ RM is defined as an M -dimensional random variable which could be
be estimated if enough data points were available. Estimating a multidimen-
sional probability density function (PDF) is difficult but we could make some
basic assumptions. First, we could assume that the data has a uni-modal dis-
tribution which implies that data-samples would cluster around the class mean
and the further a point is from its mean, the lower its probability and could
be expected to be located on the convex hull of the data sample we are an-
alyzing. A more strict assumption would be to consider that the p(x|ωj) are
multivariate Gaussian distributed. Under this assumption each p(x|ωj) could be
modeled using only the sample mean µx|ωj

and a covariance matrix Σx|ωj
, that

is p(x|ωj) ∼ N (µx|ωj
,Σx|ωj

). It is also well known that we can use the squared
Mahalanobis distance (MD)

D(xi) = (xi − µx|ωj
)TΣ−1x|ωj

(xi − µx|ωj
), (5)

as a measure of the distance of a data point with respect to its mean.
Based on these assumptions we propose a method for finding the SV candi-

dates by computing the D(xi) for all i = {1, 2, . . . , N}. Once all training vectors

6 P. Rivas

are sorted by their MD to their respective mean, and saved into the sets Zj for
the j-th class, then we can form the initial working set B of size Bini using the
procedure described in Algorithm 1 (explained in the next section). We traverse
elements of Zj,i into to B until Bini elements are added.

Algorithm 1 Mahalanobis Distance-Based Working-Set Selection for Large-
Scale LP-SVR Training Speedup

Require: A training set Tφ = {xi, di}Ni=1.
Require: A desired number of samples per class v.
1: for j = 1 to |D| do
2: Estimate parameters (µx|ωj

,Σx|ωj
). . Sample mean and variance.

3: for i = 1 to N do
4: Compute Mahalanobis distance D(xi)j with (5).
5: end for
6: Obtain indices Zj corresponding to the sorted Dj . . Descending order.
7: for i = 1 to v do
8: Zj,i = Z(i)j . . In this case Bini = k ≡ v × |D|.
9: end for

10: end for
Ensure: Initial working set indices B ← Zj,i.
Ensure: Initial fixed set indices M← {1, 2, . . . , N} /∈ Zj,i.

In this manner, the SVR could be trained faster if the first working-set B
contains those k samples, thereby, speeding up the training process. A similar
approach to ours is given by Zhou, et al. [33] in 2010; but again the authors
approach is still based on class and subclass convex hulls, which makes it com-
putationally expensive.

To explain the proposed approach, consider the following definitions: Let
D = {ω1, ω2, . . . , ωj} be the set of classes where j is the total number of classes.
Let C = {C1, C2, . . . , Cj} denote a set of indices, where Cj contains the indices of
all those samples associated with the j-th class, Ci ∩ Cj = ∅ for all i 6= j, and
C ≡ {1, 2, . . . , N}.

2.4 Within-Class Mahalanobis distance and Class-Convex Hull

To explain the ideas behind the procedure shown in Algorithm 1, we will be
considering the case of all the samples xi belonging to the j-th class, that is, all
i ∈ Cj . The same principles will apply to all classes.

One of the first steps is to estimate the parameters (µx|ωj
,Σx|ωj

), i.e., from
observed events. Then the within-class MD from the i-th feature vector xi to the
center of the j-th class µx|ωj

is defined as D(xi) from (5). Next, we define Zj
as the set of indices corresponding to the ordered Mahalanobis distance samples
of the j−th class computed with (5). The indices in Zj correspond to ordered
values in descending form, as shown in Figure 2.

Accelerating the Training of an LP-SVR over Large Datasets 7

Fig. 2. Mahalanobis distance-ranking of class indices using feature vectors in either
the input space or the kernel-induced feature space.

As mentioned before, we argument that the MD D(xi) is related to the
support vectors and the class convex hull (CCH), which is defined as follows:

Θ(ωj) =

∑
i∈Cj

βixi : i ∈ Cj , βi ∈ R, βi ≥ 0,
∑
i∈Cj

βi = 1

 , (6)

where a number of |Cj | points in the form of
∑
i∈Cj βixi are the boundaries of

the j-th class sample cloud. Then we can define the sets of indices corresponding
to the convex hull of the j-th as S = Θ(ωj). The algorithm that obtains the

convex hull has complexity of O(N
M
2), where M is the dimensionality of the

feature vector. The complexity of the method proposed here has a complexity

of O(L), where L = max
[
N logN,

(
M
2

)]
. This demonstrates that our model has

lower complexity than those based on convex hulls. Now, we define a relationship
between Z, S, and SV in Proposition 1.

Proposition 1 (SVs and Within-Class Distances) Assume classes in D are
linearly separable. Let Zv = {Z(1),Z(2), . . . ,Z(v)} denote the v maximum Ma-
halanobis distance indices. Similarly, let Zj,i = {Z1,v,Z2,v, . . . ,Zj,v} be the set
of v maximum Mahalanobis distance indices of all classes. Then

1. the maximum Mahalanobis distance samples indices contain the convex hull
indices: Zv ∈ S,

2. the maximum Mahalanobis distance samples indices contain the support vec-
tor indices: Zj,i ∈ SV ,

where v is an integer stating how many samples per class should be considered.

Proposition 1 states that the first v ranked MD indices Zv contain the class
convex hull indices S and, thus, contain the support vector indices. The integer v
is bounded, |D| ≤ v ≤ |S|, and SV is as in Definition 1. Therefore, if the initial

8 P. Rivas

−3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

Convex Hull, SVs, and Max Mahalanobis Distance

x

i
, i ∈ ω

1

x
i
, i ∈ ω

2

Θ(ω
1
)

Θ(ω
2
)

SVs

 Z
ω n

 : n={1,2}

Fig. 3. Relationship between convex hull and maximum Mahalanobis distance for the
two class problem. Here it is shown the original separable two class problem, class
convex hull, support vectors, and k maximum Mahalanobis distance samples. Note
that both SVs and Convex Hull match the k maximum Mahalanobis distance samples.

working-set is fixed to the indices in Zj,i, the training process will converge
faster. This is mainly because if the support vectors are found at the very first
iterations, the problem will be solved faster. Since Zj,i is more likely (based on
Mahalanobis distance information) to contain support vector indices, one can
conclude that the training will be faster. We have found that a good value for
v is the quotient between the initial working set size Bini and the total number

of classes: v =
⌈
Bini

|D|

⌉
. This choice of v was found empirically using the datasets

discussed in the next section. This value v is used as input in Algorithm 1.

As an example, let us consider a case of a random variable x ∈ R2. Then
draw 50 samples that follows a multivariate normal distribution with parameters

µ =
[

1 2
]T

and Σ =
[

2 0 ; 0 1
2

]
and assign these to class ω1; draw 50 more from

a multivariate copula [6] distribution with parameter ρ = 0.8, and assign these
to class ω2. The problem is shown in Figure 3 with the resulting convex hull. The
associated support vectors are also shown in Figure 3. Let us remark that the
Mahalanobis distance is associated with the spreadness of the class sample cloud,
such that the most uncertain samples have the highest Mahalanobis distance, as
shown in Figure 3. It is also important to remark that the highest Mahalanobis
distance correspond to the lowest probability samples, which is also correlated to
the support vectors as mentioned before. The next section addresses the speedup
quantification and other numerical testing of Algorithm 1.

Accelerating the Training of an LP-SVR over Large Datasets 9

Table 1. Summary of the Dimensions and Properties of the Datasets.

Dataset Classes Features M Training N Reference
Ripley 2 2 250 [19]
Sonar 2 60 104 [7]
Wine 2 13 110 [12]
ADA 2 48 4, 147 [9, 21]
GINA 2 970 3, 153 [5, 21]
HIVA 2 1, 617 3, 845 [2]
NOVA 2 16, 969 1, 754 [2]
SYLVA 2 216 13, 086 [2, 5]
Iris 3 4 130 [15]
MODIS 4 4 374, 566 [22]
Power Load R 8 35, 064 [10]
Spiral 2 2 200 [30]
f(x) =sinc(x) R 1 200 [20]
Synthetic S 3 2 3, 000, 000 −
Synthetic NS 3 2 3, 000, 000 −
f(x) =sinc(x)× π R 1 1 million −

3 Experimental Results

To show the effectiveness and efficiency of the proposed algorithm, simulations
were performed over different datasets. The summary of the properties of these
datasets are shown in Table 1. Note that the simulations include classification
in two and multiple classes, as well as regression problems. While the source of
most of the datasets is referenced, the three synthetic datasets were generated
as follows: “Synthetic S” is a non-linearly separable three-class problem whose
classes are normally distributed; “Synthetic NS” is similar but the classes are
non-separable; the “f(x) = sinc(x) × π” consists of unevenly spaced points
from the sinc function that are affected by multiplicative white Gaussian noise
(WGN), making it very difficult to fit.

Here we analyze the speedup resulted of using the proposed sample selection
algorithm using state of the art models and using benchmark datasets. The
following paragraphs explain the results obtained.

3.1 Learning Speedup

Figure 4 depicts the behavior of the support vectors across iterations using the
speedup strategy. The figure shows the number of support vectors, sparse support
vectors, saturated support vectors, and exact support vectors. Note how the
support vectors are found early in the learning process. If we compare Figure 4
on the left to the analysis on the right, we notice that most of the support vectors
are found in earlier iterates, which is the goal of the strategy. We determined
experimentally that in the average case, most of the sparse support vectors (SPV)

10 P. Rivas

Fig. 4. Sample Selection. SVs as a Function of Iterations. SPV SSV ESV SV. (Left)
With proposed sample selection. (Right) Without proposed sample selection.

are found in around 40% of the total iterations. In the other hand, Figure 4 tells
that in around 20% of the total number of iterates.

Table 2 shows the total training time of the experiments without speedup.
Compare against Table 3 that shows the total training time after using the
speedup strategy. From these two tables we can observe that if strategy is used
the total training time decreases, particularly as the problem size increases, as
it was expected.

Besides a time reduction analysis, it is also important to observe if the total
number of iterations is reduced if the speedup strategy is applied. Table 4 shows
the total reduction of iterations, in percent, using the speedup strategy. Clearly,
if the problem size is large, the reduction in number of iterations is also larger.
A great benefit can be obtained of the speedup strategy, especially, if the class
cloud is as close as possible to a multivariate Gaussian distribution within the
kernel-induced feature space.

Another interesting thing to notice is that the percentage of iterations re-
duction seem to be superior in proportion to the learning time after speedup.
This follows from noticing that, even if the support vectors are found at early
iterations, still, the learning process has to perform several time-consuming de-
compositions and comparisons that might increment in size, specially, if the
number of support vectors is large. However, since support vectors are found
early at the learning process, there is no need to solve some of the subsequent
sub-problems since the support vectors found will satisfy the KKT conditions of
many of the sub-problems.

Accelerating the Training of an LP-SVR over Large Datasets 11

Table 2. Total training time without speedup (sec)

Classifiers

Dataset LS SVM LP-SVR IncSVM LSSVM
D. Reg. FFNN

Trees [1, 20, 1]
Ripley 9 16 8 4 − 4
Wine 6 4 6 3 − 5
ADA 75 174 − 4412 − 63
GINA 50 116 − 1403 − 48
HIVA 73 161 − − − −
NOVA 25 47 258 − − −
SYLVA 247 495 − − − 190
Iris 6 4 3 3 − 3
Spiral 10 10 14 8 − 10
f(x) = sinc(x) 28 41 − − 181 26
f(x) = sinc(x)× π 9376 806 − − 6933 602
Synthetic S 9349 794 − − − −
Synthetic NS 9180 817 − − − −
Avg. 2187 286 − − − −

4 Computational Concerns

The primary concern of the speedup method is the computation of the covariance
matrix Σx|ωj

. In our implementation, the covariance matrix was estimated with
the sample covariance matrix

Σx|ωj
=

1

|Cj | − 1

∑
i∈Cj

(xi − µx|ωj
)(xi − µx|ωj

)T (7)

where xi ∈ RM is some random vector with |Cj | realizations, and µx|ωj
≡

E [xi] for all i ∈ Cj . Clearly, Σx|ωj
∈ RM×M , thus, problems with a very large

number of variables e.g., the NOVA dataset, cannot be resolved under current
computational constraints. Therefore, some sort of feature reduction must be
implemented to obtain the covariance matrix. In the case of the NOVA dataset,
a large number of features are redundant or add no discriminant information
and were eliminated without loss of generality.

Moreover, for the speedup process only, the kernel choice was also limited.
The rule for selecting the kernel type is the following: If N ≥ 1000 a polynomial
kernel with degree p = 1000 is used, otherwise an RBF kernel is used. Since one
of our goals is to deal with large-scale datasets most of the experiments used a
polynomial kernel. The polynomial kernel is our second choice since it is known
to be the second best after RBF kernels [17]. The degree of the polynomial
kernel is directly related to the amount of data that can be efficiently handled
for covariance matrix estimation purposes.

12 P. Rivas

Table 3. Total training time with speedup (sec)

Classifiers

Dataset LS SVM LP-SVR IncSVM LSSVM
D. Reg. FFNN

Trees [1, 20, 1]
Ripley 8 9 7 4 − 4
Wine 1 2 4 3 − 5
ADA 71 74 − 3533 − 63
GINA 38 63 − 1191 − 48
HIVA 57 115 − − − −
NOVA 17 19 234 − − −
SYLVA 246 230 − − − 190
Iris 2 2 2 2 − 3
Spiral 5 5 5 5 − 10
f(x) = sinc(x) 9 8 − − 15 26
f(x) = sinc(x)× π 5672 764 − − 5597 602
Synthetic S 7038 467 − − − −
Synthetic NS 8608 672 − − − −
Avg. 1674 187 − − − −

5 Conclusion

Within the context of kernel-induced feature space one can assume the data is (or
is close to be) linearly separable and then compute the distances from each point
to the center of the class cloud. This is done using the Mahalanobis distance.
Since the support vectors (SVs) most likely lie on the class cloud boundaries or
within the class convex hull, we can use the Mahalanobis distance to rank the
training set, such that, the samples with the largest distances are used first as
part of the working set. Experimental results suggest a reduction in the total
training time, and a more dramatic decrease in the total iterations percentage.
Results also suggest that, using the speedup strategy the support, the SVs are
found early in the learning process. Furthermore, the speedup strategy was tested
with other methods with similar results, suggesting that the proposed approach
is not particular to LP-SVR but rather useful for other SV-based methods.

References

1. Bennett, K.P., Bredensteiner, E.J.: Duality and geometry in svm classifiers. In:
ICML. vol. 2000, pp. 57–64 (2000)

2. Cawley, G.C.: Leave-one-out cross-validation based model selection criteria for
weighted ls-svms. In: The 2006 ieee international joint conference on neural net-
work proceedings. pp. 1661–1668. IEEE (2006)

3. Chen, X., Xiao, Y.: Geometric projection twin support vector machine for pattern
classification. Multimedia Tools and Applications pp. 1–17 (2020)

4. Cherkassky, V., Ma, Y.: Practical selection of svm parameters and noise estimation
for svm regression. Neural networks 17(1), 113–126 (2004)

Accelerating the Training of an LP-SVR over Large Datasets 13

Table 4. Iterations reduction percentage after speedup.

Classifiers

Dataset LS SVM LP-SVR IncSVM LSSVM
D. Reg. FFNN

Trees [1, 20, 1]
Ripley 1 2 22 52 − 0
Wine 1 4 0 1 − 0
ADA 24 9 − 10 − 0
GINA 12 10 − 11 − 0
HIVA 39 9 − − − −
NOVA 7 1 4 − − −
SYLVA 30 1 − − − 0
Iris 1 1 8 5 − 0
Spiral 15 12 4 7 − 0
f(x) = sinc(x) 5 13 − − 1 0
f(x) = sinc(x)× π 59 57 − − 43 1
Synthetic S 23 51 − − − −
Synthetic NS 27 37 − − − −
Avg. 18.7 15.7 − − − −

5. Collobert, R., Bengio, S.: Svmtorch: Support vector machines for large-scale re-
gression problems. Journal of machine learning research 1(Feb), 143–160 (2001)

6. Darsow, W.F., Nguyen, B., Olsen, E.T., et al.: Copulas and markov processes.
Illinois journal of mathematics 36(4), 600–642 (1992)

7. Gorman, R.P., Sejnowski, T.J.: Analysis of hidden units in a layered network
trained to classify sonar targets. Neural networks 1(1), 75–89 (1988)

8. Gu, X., Chung, F.l., Wang, S.: Fast convex-hull vector machine for training on
large-scale ncrna data classification tasks. Knowledge-Based Systems 151, 149–
164 (2018)

9. Joachims, T.: Making large-scale svm learning practical. Tech. rep., Technical Re-
port (1998)

10. Karsaz, A., Mashhadi, H.R., Mirsalehi, M.M.: Market clearing price and load fore-
casting using cooperative co-evolutionary approach. International Journal of Elec-
trical Power & Energy Systems 32(5), 408–415 (2010)

11. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.: A fast iterative
nearest point algorithm for support vector machine classifier design. IEEE trans-
actions on neural networks 11(1), 124–136 (2000)

12. Kinzett, D., Zhang, M., Johnston, M.: Using numerical simplification to control
bloat in genetic programming. In: Asia-Pacific Conference on Simulated Evolution
and Learning. pp. 493–502. Springer (2008)

13. Liu, Z., Liu, J., Pan, C., Wang, G.: A novel geometric approach to binary classifi-
cation based on scaled convex hulls. IEEE transactions on neural networks 20(7),
1215–1220 (2009)

14. Mangasarian, O.L., Musicant, D.R.: Large scale kernel regression via linear pro-
gramming. Machine Learning 46(1-3), 255–269 (2002)

15. McGarry, K.J., Wermter, S., MacIntyre, J.: Knowledge extraction from radial basis
function networks and multilayer perceptrons. In: IJCNN’99. International Joint
Conference on Neural Networks. Proceedings. vol. 4, pp. 2494–2497. IEEE (1999)

14 P. Rivas

16. Mehr, A.D., Nourani, V., Khosrowshahi, V.K., Ghorbani, M.A.: A hybrid sup-
port vector regression–firefly model for monthly rainfall forecasting. International
Journal of Environmental Science and Technology 16(1), 335–346 (2019)

17. Mezghani, D.B.A., Boujelbene, S.Z., Ellouze, N.: Evaluation of svm kernels and
conventional machine learning algorithms for speaker identification. International
journal of Hybrid information technology 3(3), 23–34 (2010)

18. Niu, B., Jin, Y., Lu, W., Li, G.: Predicting toxic action mechanisms of phenols
using adaboost learner. Chemometrics and Intelligent Laboratory Systems 96(1),
43–48 (2009)

19. Osuna, E., De Castro, O.: Convex hull in feature space for support vector machines.
In: Ibero-American Conf. on Artificial Intelligence. pp. 411–419. Springer (2002)

20. Peng, X.: Tsvr: an efficient twin support vector machine for regression. Neural
Networks 23(3), 365–372 (2010)

21. Platt, J.C.: Using analytic qp and sparseness to speed training of support vector
machines. In: Adv. in neural information processing systems. pp. 557–563 (1999)

22. Rivas-Perea, P.: Southwestern us and northwestern mexico dust storm modeling
trough moderate resolution imaging spectroradiometer data: a machine learning
perspective. Tech. rep., NASA/UMBC/GEST GSSP. (2009)

23. Rivas Perea, P.: Algorithms for training large-scale linear programming support
vector regression and classification. The University of Texas at El Paso (2011)

24. Rivas-Perea, P., Cota-Ruiz, J.: An algorithm for training a large scale support
vector machine for regression based on linear programming and decomposition
methods. Pattern Recognition Letters 34(4), 439–451 (2013)

25. Santamaŕıa-Bonfil, G., Reyes-Ballesteros, A., Gershenson, C.: Wind speed fore-
casting for wind farms: A method based on support vector regression. Renewable
Energy 85, 790–809 (2016)

26. Smola, A., Scholkopf, B., Ratsch, G.: Linear programs for automatic accuracy
control in regression. In: 1999 Ninth International Conference on Artificial Neural
Networks ICANN 99.(Conf. Publ. No. 470). vol. 2, pp. 575–580. IET (1999)

27. Trzciński, T., Rokita, P.: Predicting popularity of online videos using support vec-
tor regression. IEEE Transactions on Multimedia 19(11), 2561–2570 (2017)

28. Vapnik, V., Golowich, S., Smola, A.: Support vector method for function approxi-
mation, regression estimation, and signal processing. Advances in neural informa-
tion processing systems 9, 281–287 (1997)

29. Wang, D., Qiao, H., Zhang, B., Wang, M.: Online support vector machine based on
convex hull vertices selection. IEEE Transactions on Neural Networks and Learning
Systems 24(4), 593–609 (2013)

30. Xu, Z., Huang, K., Zhu, J., King, I., Lyu, M.R.: A novel kernel-based maximum a
posteriori classification method. Neural Networks 22(7), 977–987 (2009)

31. Zhang, L., Zhou, W.: On the sparseness of 1-norm support vector machines. Neural
Networks 23(3), 373–385 (2010)

32. Zhong, H., Wang, J., Jia, H., Mu, Y., Lv, S.: Vector field-based svr for building
energy consumption prediction. Applied Energy 242, 403–414 (2019)

33. Zhou, X., Jiang, W., Tian, Y., Shi, Y.: Kernel subclass convex hull sample selection
method for svm on face recognition. Neurocomputing 73(10-12), 2234–2246 (2010)

