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Abstract—This article presents a proof of convergence and
sparsity of a linear programming support vector machine for
regression. First, the Support Vector Regression (SVR) problem
is posed as a linear programming problem modeled on a primal
and dual fashion leading to the definitions of optimality. Second,
we describe a sequential optimization method based on variables
decomposition, constraints decomposition, and primal-dual inte-
rior point methods for solving large-scale regression/classification
problems. Third, based on the methodology, we present proof of
convergence and optimality conditions of the sequential optimiza-
tion and its ability to produce sparse solutions.

Index Terms—machine learning theory, support vector ma-
chines, support vector regression, interior point methods, linear
programming

I. INTRODUCTION

Machine Learning is a tool which has been applied to solve
many problems nowadays and includes various interesting
algorithms (e.g. Neural Network, Support Vector Machine
(SVM), Deep Learning and Genetic Algorithm). The algorithm
which is focused in this paper is SVM because it is one of
traditional algorithms in the field of machine learning and
has been widely used in several applications from the past
until the present (e.g. Face detection [1], Text and hypertext
categorization [2], Classification of images [3], Bioinformatics
[4] and Handwriting recognition [5]).

In addition to classification problems, SVM can also be
applied to address regression problems, and this is called Sup-
port Vector Regression (SVR). Recently, researchers have used
SVR to find a solution for practical problems. In 2016, Errami
and Rziza [6] proposed a method using SVR to improve a
pedestrian detection after performing features extraction. In
2018, Hou et.al. [7] utilized SVR optimized by improved fruit
fly optimization algorithm in order to predict the stock prices,
and Azad et.al. [8] discovered a solution to forecast electricity
peak load using SVR for urban development. In 2019, Wu
et.al [9] applied Twin SVR to find a pair of non-parallel lower
and upper bound functions for feature selection problems. In
2020, Li et.al. [10] proposed a clustering-based SVR approach
for forecasting bus passenger flows. They applied Affinity
Propagation(AP) to cluster the input data including training
data and test data, and then in each cluster, the optimized
least square SVR predicts the results for the test data.

Although SVR is significantly popular for being applied to
solve some problems or improve a number of solutions as
mentioned earlier, it still needs to be developed in term of

a few factors (e.g. time complexity with a large-scale data)
and be proved that it can have some principal properties (e.g.
sparseness).

This paper formulates a non-linear SVR into a linear pro-
gramming SVR (LP-SVR) by applying primal, dual and KKT
conditions and also shows an algorithm consisting of several
methods to optimize LP-SVR (e.g. variable decomposition,
constraints decomposition and interior point methods). At last
the theoretical proofs which show that the algorithm can
meet sparseness, optimality and convergence are provided.
Therefore, the contributions of this paper can be concluded
as the following:
• LP-SVR is formulated from a non-linear SVR.
• The algorithm for large-scale LP-SVR is proposed.
• The theoretical proofs of sparseness and convergence of

the proposed algorithm are shown.
The remainder of this paper is organized as followed. LP-

SVR is formulated in Section II, and Section III shows the
proof of sparseness of LP-SVR. In Section IV, the proposed
algorithm and the proof of convergence with respect to variable
and constraints decomposition are explained, and the proof of
convergence of interior point method is provided in Section
V. Finally, everything is concluded in Section VI.

II. LARGE-SCALE LP-SVR FORMULATION

Let us assume we have training samples {(xi, di)}Ni=1,
where x ∈ X ⊆ RM is a regressor and d is the desired output.
Then, one can define a non-linear SVR prediction function:

dj ≡ f(xj) =

N∑
i=1

(α+
i − α

−
i )k(xi,xj) + (b+ − b−), (1)

where α+,α− ∈ RN+ ; b+, b− ∈ R+; k(·, ·) is a valid
kernel function [11], [12], e.g. a polynomial kernel; α+ =
max{α, 0}, α− = max{−α, 0}; b+ = max{b, 0}, b− =
max{−b, 0}; α ∈ RN ; and b ∈ R. Kernel functions
map the input feature vectors to the kernel-induced feature
space denoted H since these kernel functions follow the
properties of Hilbert spaces [11]. The kernel-induced fea-
ture space for non-linear SVR can be defined as H ={
f(xj) : dj =

∑N
i=1(α+

i − α
−
i )k(xi,xj) + (b+ − b−)

}
, for

all xj ∈ RM and j = {1, 2, . . . , N}. The objective is to find
the set of parameters α and b. One can find these parameters
via constrained optimization.



A. Primal, Dual, and KKT Conditions

First, let us assume the mapping

k(xi,xj) : X (N×M)×(M×N) 7→ HN×N .

Then, assume that the slack variables ξi, ξ∗i can be expressed
as simply 2ξi (since ξiξ

∗
i = 0). Then, let us introduce a

slack variable u to get rid of the inequalities of the traditional
SVR problem. Based on the above, the following optimization
problem can be proposed:

min
α±,b±,ξ,u

∑N
i=1

(
α+
i + α−i + 2Cξi

)

s.t.


−
∑N
i=1(α+

i − α
−
i )k(xj ,xi)

−b+ + b− − ξj + uj = ε− dj∑N
i=1(α+

i − α
−
i )k(xj ,xi)

+b+ − b− − ξj + uj = ε+ dj
α+
j , α

−
j , b

+, b−, ξj , uj ≥ 0

for all j = 1, 2, . . . , N.
(2)

Problem (2) can be posed as the linear programming prob-
lem in its canonical for, which is the following:

min
z∈Rn

cT z

s.t.
{

Az = b
z ≥ 0,

(3)

where z ∈ Rn is a vector containing the unknowns, c ∈ Rn
and b ∈ Rm are vectors of known parameters, and A ∈ Rm×n
is a matrix of known coefficients associated to z in a linear
relationship.

Thus, Problem (2) can be posed as a linear programming
problem by defining the following equalities:

A =

(
−K K −1 1 −I I
K −K 1 −1 −I I

)
, (4a)

b =

(
1ε− d
1ε+ d

)
, (4b)

z =
(
α+ α− b+ b− ξ u

)T
, (4c)

c =
(
1 1 0 0 2C 0

)T
, (4d)

where A ∈ R(2N)×(4N+2), b ∈ R2N , z, c ∈ R4N+2. If we use
the above equalities, then problems (3) and (2) are identical,
and we can claim that the problem has been posed as an LP
problem.

Similarly, using equalities (4a)-(4d), we can obtain the dual
problem of (2) as follows:

max
λ

bTλ

s.t.
{

ATλ + s = c
s ≥ 0,

(5)

where λ is a vector of dual variables defined over R2N , and
s is a slack vector variable in R4N+2.

Similarly, for the primal (2) and dual (5), the KKT condi-
tions are defined as follows:

ATλ + s = c, (6a)
Az = b, (6b)
zisi = 0, (6c)

(z, s) ≥ 0, (6d)
for i = 1, 2, . . . , n,

where the equality zisi implies that one of both variables
must be zero. This equality will be referred to as the comple-
mentarity condition. Note that the KKT conditions depend on
the variables (z,λ, s), and if the set of solutions (z∗,λ∗, s∗)
satisfy all the conditions, the problem is said to be solved. The
set (z∗,λ∗, s∗) is known as a primal-dual solution.

III. OPTIMALITY AND PROOF OF SPARSENESS

Let z∗ be the solution to the primal problem (2), and let
(λ∗, s∗) be the solution to the dual problem (5). The proposed
LP-SVR exhibits two important properties. First, that it has a
global solution. That is, if z∗ is a minimum for problem (2),
then z∗ is a global minimum since problem (2) is a convex
problem (i.e., a linear programming problem) [13]–[16].

Second, its optimality conditions are well defined. That is,
for problem (2), the KKT conditions (6a)-(6d) are necessary
and sufficient for optimality since (z∗,λ∗, s∗) is a solution
to the primal (2) and dual (5), then it follows that the KKT
conditions (6a)-(6d) are necessary and sufficient for optimality
[13], [14], [16], [17].

One concern of the work presented here is to demonstrate
that the solution of the proposed LP-SVR is better than that
of SVRs in the sense of solution sparseness. Sparseness in
a solution is desired because any SV-based model relies on
actual feature vectors xi to define the optimal set of model
parameters (αi, b) for all i : αi 6= 0. Especially since the
feature vectors xi are required for kernel distances as shown
in (1).

In 2010, Zhang, et al. performed a comprehensive study
in regard to SVM sparseness [18]. The authors explain that
sparseness of a learning machine depends on the problem and
the precision of the solution. Then, the authors prove (see
[18] Theorems 1 and 2) that, for their proposed LP-SVR, the
solution is always sparser than regular SVRs. Therefore, based
on Zhang’s theorems we prove that our formulation is also
sparser than regular SVRs. Before the proof, the following
definitions are necessary:

Definition 1 (Support Vectors). Let T = {xi, di}Ni=1 be a
training set; let z be a solution to problem (2); and let (1) be
the regression function for problem (2). Then,

1) VS = {xi : di − ε < f(xi) < di + ε} defines the set
of Saturated Support Vectors (SSVs).

2) VE = {xi : f(xi) = di+ε, or f(xi) = di−ε} defines
the set of Exact Support Vectors (ESVs).

3) VN = {xi : f(xi) < di+ε, or f(xi) > di−ε} defines
the set of Non-Support Vectors (NSVs).



4) Vα = {xi : αi 6= 0} defines the set of Sparse Vectors
(SPVs).

5) N = |VS |+ |VE |+ |VN |.
6) S = VS ∪VE , means that the union of the SSVs and the

ESVs is the set of Support Vectors (SVs).
7) A = {αi : αi 6= 0} denotes the set of Non-zero

Coefficients of the decision function (1) and of problem
(2).

Theorem 1 (Based on Zhang, et al. [18]: ESV Bound). Given
an optimal solution z∗ to (2), the number of nonzero αi
coefficients of (2) has the following upper bound:

|A| ≤ |VE |. (7)

for all i : αi 6= 0.

Proof. Consider the LP problem

min
z∗

cT z∗ (8a)

s.t. Az∗ = b (8b)
z∗ ≥ 0, (8c)

which is equivalent to (2), where A ∈ Rm×n and z∗ ∈ Rn.
Then, for α∗ we can define the following equality

|A| =|{α∗j : α∗j 6= 0, j = 1, 2, . . . , N}| (9)

+ |{α+∗
j : α+∗

j 6= 0, j = 1, 2, . . . , N}|
+ |{α−∗j : α−∗j 6= 0, j = 1, 2, . . . , N}|.

Now, let

NPE(z∗) ≤ m, (10)

denote an upper bound to the number of positive elements in
z∗. By (10), there are at most 2N basic variables in z∗ that can
take nonzero values; the other non-basic variables take zeros.
Among these basic variables, there are |VS | of ξ∗ > 0 and
|VS | of u∗ > 0, |VN | of u∗ > 0, and |VE | of u∗ = 2ε apart
from the nonzero coefficients in α+∗

j , α−∗j , j = {1, 2, . . . , N}.
As a result, the number of nonzero coefficients is

|A| = |{α∗j : α∗j 6= 0, j = 1, 2, . . . , N}| (11)

≤ 2N − 2|VS | − |VN | − |VE |. (12)

Since N = |VS |+ |VE |+ |VN |, we have that

|A| ≤ |VE |+ |VN |. (13)

This completes the proof.

Therefore, we can say that given an optimal solution z∗

to (2), the number of nonzero αi coefficients of (2) has the
following upper bound:

|A| ≤ |VE |,

for all i : αi 6= 0. This property states that ESVs characterize
the sparseness of problem (2) just as SVs characterize the
sparseness of any SVR formulation. The property proved by
the theorem points out that the proposed LP-SVR problem (2)
possess better sparseness than that of standard SVRs, since

there are always several SSVs in standard SVRs, especially
for practical noisy datasets used in recognition or regression
problems [18]. We can further have an upper bound with
respect to the rank of kernel matrix as follows:

Theorem 2 (Based on Zhang, et al. [18]: Rank Bound).
Given an optimal solution z∗ to (2), the number of nonzero
coefficients of (2) has the following upper bound:

|A| ≤ rank(K), (14)

and the column vectors k(xj ,x1), k(xj ,x2), . . . , k(xj ,xi),
are linearly independent for all j ∈ A.

Proof. For the LP-SVR problem (2), that is equivalent to (8),
let us denote the column vector matrix associated with the
variables α+∗

j , α−∗j , j = {1, 2, . . . , N} by

Bα =

(
−K K
K −K

)
. (15)

According to [18], the number |A| of nonzero variables in
α+∗
j , α−∗j , j = {1, 2, . . . , N} is at most equal to the number

of columns in the corresponding basic column vector matrix
B∗α which are shared by Bα and the optimal basic matrix B∗

corresponding to the optimal solution z∗. Hence,

|A| ≤ rank(B∗α) ≤ rank(Bα) = rank(K), (16)

thus,

|A| ≤ rank(K). (17)

Since the optimal basic matrix B∗ is linearly independent, so is
B∗α. Now the column vectors {(φj(x1).φj(x2), . . . , φj(xi) :
α∗j 6= 0, i, j = 1, 2, . . . , N} are linearly independent, since
α+∗
j ≥ 0 (or α−∗j ≥ 0) associated with α∗j 6= 0 must be the

basic variables.

In summary, we can say that the number of nonzero
coefficients of (2) has the following upper bound:

|A| ≤ rank(K),

and the column vectors k(xj ,x1), k(xj ,x2), . . . , k(xj ,xi),
are linearly independent for all j ∈ A. This means that
the LP-SVR regression function (1) can be exactly repro-
duced using only those samples that are SVs, without af-
fecting performance. This property also indicates that vectors
k(xj ,x1), k(xj ,x2), ..., k(xj ,xi), for all j ∈ A, in the deci-
sion function f(x) =

∑
i∈A(α+

i − α
−
i )k(xi,x) + (b+ − b−),

are linearly independent. This means one cannot further reduce
the number of basis functions in the regression function, and
also suggests that the proposed LP-SVR (2) will lead to the
sparsest model representation.

Let us remark that problem (2) was designed to maximize
computational efficiency without sacrificing accuracy, which is
achieved by not introducing unnecessary parameters into the
problem and by posing a problem that minimizes the number
of SVs without affecting performance. Nonetheless, the train-
ing phase (i.e., learning process) still may be computationally
expensive for applications with N larger than a few thousands.



In the following section, the learning process for the case when
N is very large is explained.

IV. PROOF OF CONVERGENCE AND OPTIMALITY
CONDITIONS

Algorithm 1 shows an algorithm that combines both variable
and constraint decomposition to solve a large-scale LP-SVR
training problem.

As Algorithm 1 shows, the process of solving problem
(2) involves the iterative call to the variable decomposition
and constraints decomposition algorithms described in [19]–
[21], until the KKT conditions (6a)-(6d) or a stopping criteria
are satisfied. Clearly, if the KKT conditions are satisfied, the
solution is guaranteed to be the optimal solution. Therefore,
as long as the variable and constraint decomposition parts of
Algorithm 1 terminate at an optimal solution, the complete
process also converges to an optimal solution.

To explain convergence and optimality of the decomposition
algorithms, first, we discuss how the constraints decomposition
process, i.e. line 6 through 17 of Algorithm 1, terminates in a
finite number of iterations; second, it follows to discuss how
the variables decomposition process, i.e. line 3 through 28 of
Algorithm 1, terminates in a finite number of iterations; and
third, we discuss global convergence.

A. Finite Number of Iterations for Constraints Decomposition
Algorithm

Theorem 3 (Based on Bradley, et al. [22]: Finite Termination
of Algorithm 1). The sequence z(t) generated in line 13 of
Algorithm 1 has the following properties:

1) The sequence cT z(t) of the objective function values is
non-increasing and is bounded by the global minimum
of minz

{
cT z

}
subject to {Az = b, z ≥ 0}.

2) The sequence cT z(t) of the objective function values
becomes constant: cT z(t) = cT zt+1 for all t ≥ j for
some j ≥ 1.

3) For t ≥ j, the active constraints in line 13 of Algorithm
1 at z(t) with positive multipliers remain active for
iteration t+ 1.

4) For all t ≥ tmax, for some tmax ≥ j, z(t) is a
solution of the linear program minz

{
cT z

}
subject to

{Az = b, z ≥ 0}, provided all active constraints at
z(t) have positive multipliers remain for t ≥ j.

This theorem is extremely important, because it allows us to
establish that the algorithm terminates in finite time. Here, the
theorem assumes that the linear program minz

{
cT z

}
subject

to {Az = b, z ≥ 0} has a solution and, hence, that all the
sub-problems in line 13 of Algorithm 1 also have solutions.
Second, assume they satisfy the KKT conditions. Then, under
these assumptions, we can prove that the theorem holds true.
However, we must first establish and prove the following
lemma, which consequently will allow us to prove the theorem.

Lemma 1 (Based on Bradley, et al. [22]: Decomposition
KKT Conditions). If z solves the linear program minz

{
cT z

}
subject to {Az = b, z ≥ 0}, and (z,λ) ∈ Rn+m is a

primal-dual optimal pair, such that λI > 0, where I ⊂
{1, 2, . . . ,m} and λJ = 0, where J ⊂ {1, 2, . . . ,m},
I ∪ J = {1, 2, . . . ,m}, then

z ∈ arg min
z

{
cT z

}
s.t {AIz = bI , z ≥ 0} , (18)

where AI has rows of Ai, for all i ∈ I, and bI has elements
bi, for all i ∈ I.

Proof. The KKT conditions for a primal-dual optimal pair
(z,λ) are:

c = ATλ,

λT (Az− b) = 0

Az− b ≥ 0,

z,λ ≥ 0,

which under the condition λI > 0 imply that

AIz = bI ,

λJ = 0,

AJ z ≥ bJ .

It can be claimed [22] that z is also a solution for (18)
because the primal-dual optimal pair (z,λ) satisfies the KKT
conditions:

c = AT
IλI ,

λI ≥ 0,

AIz = bI ,

which are necessary and sufficient.

Proof of Theorem 3. The proof is as follows:

1) By Lemma 1 cT z(t) is a lower bound for cT z(t+1).
Therefore, of the objective function values is non-
increasing. Since the constraints in line 13 of Algorithm
1 form a subset of the constraints of minz

{
cT z

}
subject

to {Az = b, z ≥ 0}, then, it follows that cT z(t+1) ≤
minz

{
cT z

}
subject to {Az = b, z ≥ 0}.

2) Since there is a finite number of vertices to the linear
program minz

{
cT z

}
subject to {Az = b, z ≥ 0}, as

well as of the subproblems in line 13 of Algorithm 1, it
follows that from a certain t̄ onward, a finite subset of
such vertices will repeat infinitely often. Since a repeated
vertex gives the same value for cT z, it follows, by the
nondecreasing property of cT z(t) established above, that
all vertices between repeated vertices also have the same
objective value cT z and thus: cT z(t) = cT z(t+1) ≤
minz

{
cT z

}
subject to {Az = b, z ≥ 0}, ∀t ≥ t̄.

3) Let t̄ be as defined in the theorem. Let the index
j ∈ {1, 2, . . . ,m} be that of some active constraint at
iteration t̄ with positive multiplier (Ajz

(t̄) = bj ,λ
(t̄)
j >

0), which has become inactive in the next step, that is:



Algorithm 1 Variables and Constraints Decomposition Strategy for a LS LP-SVR
Require: a) B0, initial working set size. b) T = {xi, di}Ni=1, a training set with N samples. c) τ , number of blocks for block

decomposition. d) l, maximum in-out.
1: B ← randomly selected B0 indices as the initial wk. set.
2: M← indices not in B, that denotes the initial fixed set.
3: Begin . Variables Decomposition.
4: W ← {xi, di}i∈B
5: Fix αj = 0 for all j ∈M. . Variables in (2) ignored.
6: Begin . Constraints Decomposition.
7: Define A,b, c with (4a)-(4d).
8: AB,bB, cB ← A,b, c

9:


A1
R b1

R
A2
R b2

R
...

...
Aτ
R bτR

← BLOCKPARTITION(τ ,AB,bB)

10: t = 0 . Iterations counter.
11: repeat
12: t = t+ 1
13: z

(t)
R ← IPMSOLVELP(cR,AR,bR) . Solver.

14: z
(t)
i,B =

{
z

(t)
j,R if j = i, for all j ∈ R
0 otherwise,

15: until
(
cTBz

(t)
B = cTBz

(t+4)
B

)
. Stops after 4 iterations.

16: zB ← z
(t)
B . Problem is solved for W .

17: End . End Constraint Decomposition.
18: for all j ∈M do . Verify problem solved for M.
19: Reconstruct uj , ξj , verify primal LP.
20: Fix λj = 0, reconstruct sj , verify dual LP.
21: B̃ ← VERIFYCOMPLEMENTARITY(zj , sj , B0)
22: end for
23: if zjsj 6= 0 then . If problem (2) is not solved then, choose new working set.
24: B ← CREATENEWWORKINGSET(B,B0,B̃)†

25: else
26: Stop Training
27: end if
28: End . End Variable Decomposition.
29:
(
α+ α− b+ b− ξ u

)T ← z
30: return (α+,α−, b+, b−)
†Note: Indices having been at least l times in and out of the working set B are moved permanently into B.

Ajz
(t̄+1) > bj . We then obtain the following contra-

diction by the previous item and the KKT saddlepoint
contradiction:

0 = cT z(t̄+1) − cT z(t̄)

≥
(
λ(t̄)

)T (
Ā(t̄)z(t̄+1) − b̄(t̄)

)
≥ λ

(t̄)
j

(
Ajz

(t̄+1) − bj

)
≥ 0. (19)

4) By the second item above, a finite number of vertices
repeat infinitely for t ≥ t̄ all with constant cT z(t). Since
active constraints with positive multipliers at iteration t
remain active at iteration t+ 1 by the third item above
and hence have a positive multiplier by assumption

of the fourth item, the set of active constraints with
positive multipliers will remain constant for t ≥ t̄,
for some t̃ ≥ t̄, because there is a finite number of
constraints, and hence z(t) will remain a fixed vertex
z̄ for t ≥ t̃. The point z̄ will satisfy all the con-
straints of the linear problem minz

{
cT z

}
subject to

{Az = b, z ≥ 0} because all constraints are eventually
imposed on the infinitely repeated vertex z̄. Hence,
cT z̄ which lower-bounds the minimum of minz

{
cT z

}
subject to {Az = b, z ≥ 0} is also a minimum of
minz

{
cT z

}
subject to {Az = b, z ≥ 0} because z̄ is

feasible. Hence the algorithm can be terminated at t = t̃.



This in summary proves that the constraint decomposition
strategy has a finite number of iterations and will terminate in
finite time.

B. Finite Number of Iterations for Variables Decomposition
Algorithm

Let T = {xi, di}Ni=1 define a training with N samples.
Then the number of variables and constraints in problem (2)
is 4N + 2 and 2N respectively. Now, following Torii, et al.
algorithm in [23], we can define B(t) as the working set at
iteration t. Then, we let the following sequence

B(t) = B(t+k+1),

B(t+1) = B(t+k+2), . . . ,

B(t+k) = B(t+2k+1),

denote an infinite loop, since the same working set it is being
repeated every k iterations. Now, suppose we use line 24 of
Algorithm 1 to permanently add to the working set those
constraints entering and leaving the working set for a number
of iterations. Then, if for any reason, e.g., the properties
of the dataset samples, an infinite loop exists, it would be
prevented at line 24 of Algorithm 1, since the constraints
entering and exiting the working set by at least l times are
added permanently to the working set, which implies that the
infinite loop is broken. That is, the infinite loop will not occur
at current (t, t + k) or further iterations (t + 1, t + k + 1).
Moreover, since the number of both constraints and variables
is finite, the number of infinite loops is also finite. Therefore,
infinite loops are handled in finite steps. Hence, Algorithm 1
terminates in a finite number of iterations.

V. INTERIOR POINTS CONVERGENCE AND OPTIMALITY

Part of the computational robustness of the proposed decom-
position methods rely on the usage of interior point methods
(IPM) for linear programming (see [24] for a comprehensive
review on IPM). Here we want to discuss shortly how the
linear programs are being solved in line 13 of Algorithm 1,.

First, let us consider the KKT conditions (6a)-(6d) estab-
lished for our problem (2). Let us recall that the problem (3) is
equivalent to (2) and that the KKT conditions (6a)-(6d) are also
equivalent to (6a)-(6d). IPM considers the KKT conditions as
the following function:

F(z,λ, s) =

 ATλ + s− c
Az− b
XS1

 = 0, (20a)

z, s ≥ 0 (20b)

where X = diag(z1, z2, ..., zn), and S = diag(s1, s2, ..., sn).
The IPM generates a set of solutions F (t) = (z(t),λ(t), s(t))
at each iteration t. The key idea is to find solutions
(z(t),λ(t), s(t)) that satisfy F(z(t),λ(t), s(t)) = 0 and more
importantly z(t), s(t) being strictly positive, except at the
solution where z or s may be equal to zero.

IPM surrounds the current point in a linear model in order
to obtain the step direction (∆z,∆λ,∆s) as follows:

J(z,λ, s)

 ∆z
∆λ
∆s

 = −F(z,λ, s), (21)

where J(z,λ, s) is the Jacobian of F(z,λ, s). Then the step
direction (using a predictor-corrector strategy) becomes 0 AT I

A 0 0
S 0 X

 ∆z
∆λ
∆s

 =

 −rc
−rb

−XS1−∆Xaff∆Saff1 + σµ1

 ,

(22)

where rc = ATλ + s − c and rb = Az − b are residuals,
∆Xaff,∆Saff are the affine-scaling direction, µ is the duality
gap, and σ is an adaptive line-search parameter depending on
µ. The new iterate is therefore

(z,λ, s) + α(∆z,∆λ,∆s), (23)

where α ∈ (0, 1] is appropriately chosen in order to maintain
(z, s) strictly positive.

A. On The Convergence of IPM for LP

Let F (t) = (z(t),λ(t), s(t)) be the set of feasible solutions
generated inside the function call IPMSolveLP(·) at line 13 of
Algorithm 1 at iteration t. Under this definition, Zhang, Tapia,
et al. [25], as well as [26]–[29], demonstrate that IPM for LP
exhibits the following properties:
• F (t) converges to F∗,
• the duality gap converges to zero z(t)Tλ(t) → 0 with
q-quadratic behavior if all solutions are non-degenerate,

• the duality gap converges to zero z(t)Tλ(t) → 0 with q-
superlinear behavior if there is any degenerate solution.

The above properties demonstrate that LP-IPM is q-
quadratically convergent to a feasible solution, i.e., it is
equivalent to the Newton method. Even in case of degeneracy,
IPM is q-superlinearly convergent. In contrast, the simplex
method is of exponential complexity. In spite of this, the
simplex is typically used in most decomposition strategies for
large-scale SVM.

Figure 1 shows the behavior of Primal, Dual, and Comple-
mentarity Condition using IPM for an arbitrarily three-class
non-separable classification problem. The solution can easily
be found in very few iterations.

VI. CONCLUSION

This paper has presented proofs of convergence and sparsity
of a particular kind of Support Vector Machine for regression
known as Linear Programming Support Vector Machine for
Regression (LP-SVR).

We began by posing a Support Vector Regression (SVR)
problem as a linear programming problem, defining its primal
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Fig. 1. Behavior of the KKT conditions as the number of iterations progress.
The primal, dual, and complementarity condition must converge to zero.
The results shown represent the average value over several experiments on
arbitrarily three-class non-separable classification problems.

and dual. Then we used these definitions to build to the proof
of optimality using traditional KKT conditions analysis.

Next, we described a sequential optimization method based
on variables decomposition, constraints decomposition, and
primal-dual interior point methods for solving large-scale
regression/classification problems.

Finally, based on the entire methodology, we present proof
of convergence and optimality conditions of the sequential
optimization as well as its ability to produce sparse solutions.

Further work includes extending these proofs to other SVM
formulations that fit the general structure of linear program-
ming problems.
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