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Abstract—Applications of quantum machine learning algo-
rithms are currently still being studied. Recent work suggests
that classical gradient descent techniques can effectively train
variational quantum circuits. We propose to train quantum
variational circuits to find smaller text and image embeddings
that preserve contrastive-learning distances based on CLIP large
embeddings. This is a critical task since fine-tuning CLIP to
produce low-dimensional embeddings is prohibitively expensive.
We introduce CLIP-ACQUA, a model trained in a self-supervised
configuration from CLIP embeddings to reduce the latent space.
We use CLIP-ACQUA on a sizeable unlabelled corpus of text
and images to demonstrate its effectiveness. Our experiments
show that we can obtain smaller latent spaces that preserve the
original embedding distances inferred during contrastive learning.
Furthermore, using our model requires no fine-tuning of CLIP,
preserving its original robustness and structure. The data used
aids in modeling consumer-to-consumer online marketplaces.

Index Terms—quantum machine learning, self-supervised
learning, quantum variational circuits

I. INTRODUCTION

Contrastive Language-Image Pre-training (CLIP) models
have gained popularity in text-image pairs research, and
it has motivated many applications [1]. CLIP can produce
large text and image embeddings with a baseline model
of 63 million parameters; however, training CLIP from
scratch requires great compute resources, fine-tuning can
be expensive, and for many applications, the size of the
embeddings is large. Using hybrid variational quantum
machine learning, we aim to find smaller text and image
embeddings that preserve contrastive-learning distances.
Although there have been recent advances [2]-[5], quantum
machine learning applications are largely understudied.

In this paper, we introduce CLIP-ACQUA, a model
trained from CLIP image-text embeddings to reduce the
latent space while preserving distances using quantum
variational circuits in a self-supervised configuration, as
shown in Fig. 1. By applying this CLIP-ACQUA model
to a large unlabelled corpus of text and images, we obtain
smaller latent spaces that preserve the original embedding
distances obtained during contrastive learning. Using our
model requires no fine-tuning of CLIP, preserving its origi-
nal latent structure. The data used as a demonstration aids
in modeling consumer-to-consumer online marketplaces to
detect illicit activities.

We discuss background material and methodology in Sec.
II. Results and conclusions are in Sec. III.
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Fig. 1. A hybrid classic-quantum architecture to reduce the dimen-
sions of CLIP image-text embeddings.

II. BACKGROUND

Some of the most exciting work in the quantum machine
learning area has occurred in recent years. The most
related work in variational approaches can be found in
[6]-[8]. Quantum machine learning research has been widely
influenced by these works and our research continues the
work of trainable variational quantum circuits.

The work by Mari et al. [9], is closely related to our
work in the sense that both approaches combine classic
and quantum approaches. However, the authors focus on
ResNet-based transfer learning.

A. Variational quantum circuits

Variational quantum circuits [9], can be defined in terms
of a unitary operation, U, implemented as a variational
circuit on an input state |%), that produces the the output
state |y) as follows: |X) — |y) = U(w)|X), where w denotes
the parameters of the variational circuit. Then decompose
the unitary operation in the following quantum layers.

1) Hadamard operators layer: The Hadamard operator
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2) Single qubit Y rotation layer: The trainable rotation

of a qubit makes it change the spin angle, ¢, as follows:

cos(¢/2) —sin(¢/2)
sin(6/2)  cos(d/2) ] (1)

3) CNOT qubit entangling layer: The CNOT operation,
P, links qubits and propagates superposition.

on a qubit facilitates superposition: H =

Ry (¢) = e 07 /% =
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Fig. 2. Two hybrid autoencoders have dressed variational quantum circuits (middle). The autoencoder on the left trains on CLIP image
embeddings, while the one on the right uses textual embeddings. Both autoencoders are conditioned to maintain original CLIP distances.
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Fig. 3. Data visualization across different training stages, where the color indicates the norm of the embedding vector. From left to right, the
quantum hybrid approach shows how the data moves in the new latent space to satisfy the distance constraints, facilitating clustering.

4) Ezxpectation layer over Pauli Z operators: Finally, the
output of the circuit is based on the expected value of
several measurements. The measurements are applied after

the Pauli Z operator defined as follows: o, = (1) Pl

B. Quantum dressed circuit

The process of dressing a quantum circuit implies adding
a single dense layer before and after the quantum circuit,
as shown in Fig. 2 in the middle [2], [9]. The number of
neurons in the input layer matches the number of qubits.
C. Loss function

For x € R®'2 as an input embedding, our loss is:
image-text quantum autoencoder parameters

L(0;,0; 5 x4,%¢,dx ) =0y||x; — Xi|1+

agllxe = X¢l[1 + aaldx — [[zi — 22|

CLIP image-text embeddings & distance
where X is the reconstruction, and z = gp(x) is the new
low dimensional embedding achieved through an encoder

q(+). Minimizing this loss yields a new latent space that
minimizes embedding reconstruction loss and preserves
original distances. Note that for a; = a; = ag = %, the
loss is an average of the three components.

III. RESULTS AND CONCLUSIONS

We collected publicly available ads from consumer-to-
consumer online platforms where trafficking of stolen goods
and sex is common. The data consists of 82.71G of posts
that contain images and text. Duplicate posts are ignored
and all unique image-text pairs are used. We trained the
model and monitored the learning process as shown in
Fig. 3. As it can be observed, When the elements of the
loss L£( 6;,0; ; x;,%¢,dy ) are treated as a classic average,
we have immediate reconstruction gains and progressive
distance enforcement, which satisfies the main goal.

After the model is trained, it can be used to produce
lower-dimensional CLIP-based embeddings for specific
applications or datasets. Quantum advantage occurs upon
deployment for real-time applications, having a broader
impact as quantum technology becomes more accessible.
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