
Deep Learning Evolved: Overcoming Sub-Optimal
Local Minima with (µ/ρ + λ)−Evolution Strategies

Pablo Rivas ID , Senior, IEEE
School of Engineering and Computer Science

Department of Computer Science
Baylor University

Email: Pablo Rivas@Baylor.edu

Abstract—Integrating Evolution Strategies (ES) and Backprop-
agation (BP) within a deep neural network framework presents
a significant challenge, as ES has previously only been shown to
perform comparably to BP for smaller problems. In this study,
we extend the application of ES to high-dimensional problems,
using it to initialize the weights of a Deep Neural Network (DNN).
Our experiments demonstrate that this novel ES approach can
effectively overcome local minima and converge towards near-
optimal global solutions. Following ES initialization, we employ
traditional BP gradient methods to further refine the weights based
on the initial set provided by ES. A key finding of our research
is the potential for ES to reduce the computational time required
by traditional gradient-based backpropagation learning methods.
This efficiency is achieved by providing an initial set of weights
close to the global optimum, enabling the network to converge
more rapidly than with random or zero-weight initialization
approaches. Our approach offers a promising direction for future
research in the efficient training of deep neural networks and
opens up new possibilities for tackling high-dimensional problems
with these networks.

Index Terms—machine learning, deep learning, evolution
strategies, genetic algorithms

I. INTRODUCTION

Deep Backpropagation Neural Networks (DNNs) have
emerged as a pivotal tool in the realm of pattern recognition and
classification applications. Their inherent ability to approximate
any square-integrable function with remarkable precision,
coupled with their capability to flawlessly implement any
arbitrary finite training set, underscores their potency in these
domains [1]. It is noteworthy that a multitude of problems have
been efficaciously resolved utilizing deep neural networks [2].

Recently, Larochelle et al. conducted an exhaustive study
on various strategies for training deep neural networks [3].
Their findings indicate that deep neural networks underperform
compared to their single-layer or two-layer counterparts. They
also highlighted the propensity of gradient descent to become
ensnared in sub-optimal local minima, thereby hindering the
discovery of a globally optimal solution [4], [5].

The pursuit of augmenting the efficacy of the original
backpropagation (BP) algorithm has predominantly centered on
pinpointing and adopting a more sophisticated energy function.
Additionally, determining an optimal variable learning rate and
momentum has been a key focus, per the findings in [6]. It
would be beneficial to delve into the specific methodologies
and techniques employed to bolster the performance of the

BP algorithm and to explore the tangible impacts of these
enhancements on the algorithm’s precision and efficiency in
practical applications.

However, these modifications often add to the complexity of
the convergence rate of backpropagation, resulting in computa-
tionally intensive algorithms. While fast learning algorithms
such as Quickprop exist in the literature, an efficient strategy
to escape from local minima remains an elusive challenge for
DNN architectures [7]. This paper proposes a formal method
for designing Evolution Strategies (ES) for weight initialization
in deep neural networks. We hypothesize that by leveraging the
optimization capabilities of evolutionary algorithms, we can
mitigate the risk of becoming trapped in local minima. This
can be achieved by initializing weights in proximity to a global
solution and subsequently allowing a gradient descent-based
method to finalize the training of the neural network.

Despite existing research that employs ES to train neural
networks [4]–[6], [8], [9], integrating both schemes within a
deep neural framework still needs to be solved. As demonstrated
in [7], ES performs comparably to BP only for smaller
problems. While other methods attempt to perform vector
optimization using ES [10], we recognize that gradient methods
are typically more effective for this task. However, we aim
to harness the ability of ES to overcome local minima and
converge to globally optimal solutions. We aim to devise a
robust method to circumvent local minima by combining these
approaches.

Our ultimate objective is to address the issue of local
minima trapping in deep neural networks. We propose to evolve
a set of initial network weights using Evolution Strategies,
intending to produce an output closely aligned with an optimal
global solution. Subsequently, traditional gradient methods will
update the weights based on the initial set provided. This
research project will also demonstrate that by using Evolution
Strategies, we can reduce the computational time required by
traditional gradient-based backpropagation learning methods.
This is achieved by providing initial weights close to the global
optimum, enabling the network to converge more rapidly than
with a conventional random weight initialization approach.
We provide code that implements our approach in a publicly
available repository.1

1https://github.com/pablorp80/mu-ro-lambda-es.git

https://orcid.org/0000-0002-8690-0987
https://github.com/pablorp80/mu-ro-lambda-es.git

Fig. 1. A deep neural network, also known as a dense network. Network parameters are indicated as W which directly interact with input x.

The remainder of this paper is organized as follows: Section
II briefly introduces DNNs. The basic theory of ES is introduced
in Section III. The genetic operators used in this research are
explained in Section IV. Section V outlines the experiments
conducted and the results obtained. Finally, Section VI presents
the conclusions drawn.

II. DEEP NEURAL NETWORKS

A deep neural network (DNN) is architecturally defined
by the presence of an input layer, an output layer, and l
intermediate layers, referred to as hidden layers. Each of these
layers is composed of neuron units. Upon presenting an input
sample to the input layer, the neuron units in the subsequent
layers compute their respective values. This computation is
influenced by the activity of the units to which they are
connected in the preceding layers [3]. In the context of
this study, our attention is specifically drawn to a particular
DNN topology. This topology is characterized by a full,
dense connection between each layer and its subsequent layer,
extending from the input layer to the output layer [11].

In the context of a neural network, each layer, unit, bias,
and weight plays a crucial role in the network’s functionality.
For a given input x ∈ X, the j−th unit in the i−th layer is
denoted as hi

j(x). Here, i = 0 signifies the input layer and
i = l + 1 represents the output layer. The size of a layer is
expressed as

∣∣hi(x)
∣∣.

Each unit in the network has a default activation level, which
is determined by its internal bias, denoted as bij . The activation
of a unit, specifically unit hi

j(x), is dictated by the weights W i
jk

between the unit hi−1
k (x) in the (i− 1)-th layer and the unit

hi−1
j (x) in the i-th layer. This intricate interplay of layers, units,

biases, and weights forms the basis of the neural network’s
operation, enabling it to perform complex computations and
make accurate predictions. The activation of a neural unit hi

j(x)
is given by:

hi
j(x) = Φ

(
aij(x)

)
, (1)

where

aij(x) =
∑
k

W i
jkh

i−1
k (x) + bij ,

∀i ∈ {1, ..., l} ,

with
h0(x) = x.

The sigmoid activation function, denoted as Φ =sigm(·), is
defined as follows:

sigm (a) =
1

1 + e−a
,

This function can be substituted with any other activation
function per the specific task’s requirements. The computation
of the output layer, given the final hidden layer, follows a
similar process. The output function is expressed as:

o(x) = hl+1(x), (2)
hl+1(x) = Φ

(
al+1(x)

)
,

where
al+1(x) = Wl+1hl(x) + bl+1,

The activation function Φ is contingent on the supervised task
the network is designed to perform [3]. In the context of a

simple binary classification problem, it is typically the sign
function, defined as

Φ = sign (a) =
{

+1 if a > 0
−1 if a ≤ 0

as per [12].
Upon presenting an input sample x to the network, the ap-

plication of (1) across each layer instigates a pattern of activity
throughout the various layers of the neural network [11].

Fig. 1 provides a comprehensive visual depiction of a
deep network, including its associated parameters. Ideally, the
neuronal activity within the first layer should align with the
low-level features of the input, such as edge orientations in the
context of natural images. In contrast, the last hidden layers
should ideally correspond to higher-level abstractions, such as
detecting geometric shapes. This ideal mapping of neuronal
activity to features of varying complexity is based on the
research conducted in [3].

III. EVOLUTION STRATEGIES THEORETICAL BACKGROUND

Let F (w), F ∈ F be a fitness function representing the
error at the output in a real-valued deep neural network, and

F (w) → Minimum

where w are the control parameters, the N−dimensional
vectorial representation of the weights and biases in the deep
neural network weight W ∈ W and bias b ∈ b spaces,
W,b ⊂ w ∈ R, (where W ∪ b ∈ RN are finite but not
fixed) and the location of the minimum is labeled ŵ such that

w = (W1,W2, ...,WN−M , b1, b2, ..., bN)
T

and

ŵ =
(
Ŵ1, Ŵ2, ..., ŴN−M , b̂1, b̂2, ..., b̂N

)T

.

The type of components wi of w and the space spanned
by them depends on the neural network’s architecture. In the
context of Evolution Strategies [13], an individual is defined by
three components: an object of type w, an evolvable strategy
parameter set denoted by s, and a corresponding fitness value
F (w). This can be formally represented as:

a = (w, s,F (w))

The set s, which belongs to the space S, comprises self-
adaptation parameters of the ES algorithm that are inherited
by the offspring.

The population of these individuals, a, is composed of µ
parent individuals, represented as am, where m ranges from
1 to µ, and λ descendant individuals, denoted as âl, where l
ranges from 1 to λ. Here, µ and λ are the strategy parameters
not changed by the ES algorithm. The population of parents
B

(g)
µ and descendants B̂

(g)
λ at a time g are denoted as

B(g)
µ =

{
a(g)m

}
=

(
a
(g)
1 , a

(g)
2 , ..., a(g)µ

)
,

B̂
(g)
λ =

{
â
(g)
l

}
=

(
â
(g)
1 , â

(g)
2 , ..., â

(g)
λ

)
.

To determine the number of parents taking part in the
procreation of a single individual, a parameter ρ is introduced
as part of the strategy parameters along with µ and λ, where
1 ≤ ρ ≤ µ. The parameter ρ dictates the number of parents
involved in the recombination process (µ/ρ) [14], [15].

For a more detailed theoretical background on ES, the reader
is encouraged to review refs [13], [14], [16].

A. Sigma/Rho + Lambda Evolution Strategy, (µ/ρ+ λ)−ES

The (µ/ρ+λ)−ES is one kind of Evolution Strategies where
only ρ out of µ parents participate in the recombination process
to produce λ children. This kind of ES also allows the selection
of the best µ+ λ; in other words, both the children λ and the
parents µ are evaluated, and the best are kept. This allows the
parents to live until new children evolve to be better than any
parents.

B. Initializing a Deep Neural Network with (µ/ρ+ λ)−ES

We propose the usage of Evolution Strategies (µ/ρ+λ)−ES
for weight and bias initialization of deep real-valued neural
networks. We aim to overcome the problem of local minima
trapping in deep neural networks. The idea is to evolve a set
of initial network weights and biases a performing a global
search for solutions in the N -dimensional weight space and
provide a set of initial weights and biases ŵ that produce an
output very close to an optimal global solution. Finally, we let
the traditional gradient methods update the weights and biases
based on the provided initial set ŵ. The general scheme is
shown in Fig. 2.

The general procedure for the (µ/ρ+λ)−ES is characterized
by the following pseudo-code [13]:

Algorithm 1 (µ/ρ+ λ)−ES
1 Begin
2 g = 0;

3 initialize
(
B

(0)
µ =

{(
w

(0)
m , s(0)m ,F

(0)
m (w)

)∣∣∣µ
m=1

})
;

4 Repeat
5 For l = 1 to λ Do Begin
6 Cl =reproduction

(
B

(g)
µ , ρ

)
;

7 sl =s_recombination(Cl) ;
8 wl =w_recombination(Cl) ;
9 ŝl =s_mutation(sl) ;
10 ŵl =w_mutation(wl, ŝl) ;
11 F̂l = F (ŵl) ;
12 End
13 B

(g)
λ =

{(
w

(0)
m , s(0)m ,F

(0)
m (w)

)∣∣∣µ
m=1

}
;

14 (µ+ λ) : B
(g+1)
µ =selection

(
B

(g)
λ ,B

(g)
µ , µ

)
;

15 g = g + 1;

16 Until stop_criteria
(
B

(g)
µ

)
17 End

In the initial generation, denoted as g = 0, the parental
population Bµ(0) =

(
a1(0), a2(0), ..., aµ(0)

)
is established as

per line #3. Following this initialization, a loop is instigated,
encompassing lines #4–16. From the parental population Bµ(g)

at generation g, a novel offspring population Bλ(g) is generated
by executing lines #6–11, repeated λ times. Each iteration

Fig. 2. General description of the proposed scheme.

yields one offspring a. Initially, during the reproduction phase,
a parent family C of size ρ is selected randomly from the
parent pool of size µ via a uniform distribution. This selection
process for reproduction is random and does not consider
the parental fitness values F , contrasting with conventional
selection techniques in genetic algorithms [13], [16]. The
recombination of the endogenous strategy parameters (the
evolvable s) occurs in line #7, and for the object parameters
(the actual candidate solutions w) in line #8. Notably, if ρ = 1,
the recombinant is merely a copy of the parent, referred to as
(µ+ λ)−ES (not the case here). The mutation of the strategy
parameters s is performed in line #9 and those of the object
parameters w in line #10. The fitness of each offspring is
computed in line #11.

Upon the completion of the offspring population Bλ(g),
selection is executed in line #14, resulting in a new parental
population Bµ(g). Finally, a stop criterion is evaluated in line
#16.

Fitness Function: The fitness will be evaluated provided an
input vector x and its associated vector of targets (desired
output classification) T. In this project, we will compute
the sum of the absolute value of the difference between the
desired DNN output T and the actual output o(x) [17], derived
from (2). The fitness function will be denoted by:

F (ŵ) =
∑
k

∣∣Tk −Φk

(
Wl+1hl(x) + bl+1

)∣∣ ,
where

W,b ⊂ ŵ.

For the implementation, see the provided code. The following
section will explain the proposed Genetic Operators for the
ES.

IV. GENETIC OPERATORS

Genetic operators determine how new generations are
produced, which we discuss next.

A. Selection

We will use a determistic process called truncation selection
for the selection operator. That is, only the best m best
individuals out of γ individuals (denoted as am;γ) will be
chosen as the new population of solutions, this is denoted as

B(g+1)
µ = (a1;γ , a2;γ , ..., aµ;γ) .

The notation (µ/ρ + λ) indicates that both the parents
B

(g)
µ and their children B̂

(g)
λ will be considered in the selection

pool of size µ+ λ.

B. Mutation

Within the set of self-adaptation parameters s, we consider
the parameter σ as the strength of the mutation. Since the
maximum entropy is denoted as

w̃ = w + z,

z = (z1, z2, ..., zN)
T
,

then we consider two types of mutations: first, the basic
isotropic mutation s = σ, and second, a Gaussian non-isotropic
mutation s = C.

1) Isotropic Mutations: The basic isotropic mutation con-
siders every element zi as a standard normal distribution with
zero mean and standard deviation σ:

z =σ (N1(0, 1),N2(0, 1), ...,NN (0, 1))
T
,

with a probability density function (pdf):

fZ (z) =
1

√
2π

N
σN

e−
zT z
2σ2 .

1
5 th Rule σ−Adaptation. This adaptation for isotropic mu-
tations is based on the probability of generation success Ps

denoted as:
Ps =

Gs

G
,

where Gs is the number of successful generations, and G is a
fixed number of generations.

The method states that σ must be kept constant during G
generations, and after g > G the value of σ must be updated
according to the following formula:

σ =

 σ/a, if Ps >
1
5

σ · a, if Ps <
1
5

σ, if Ps =
1
5

then repeat for another G generations. Schwefel recommended
using 0.85 ≤ a < 1.
Multiplicative (Log-Normal) σ−Adaptation. This adapta-
tion method states that the mutation strength should change
according to the “log-normal operator” [16]. The concept of
a log-normal operator is elucidated by its role in generating
a logarithmic normal distribution, symbolized as σ̂. This is
expressed mathematically as σ̂l = σle

τN(0,1). The parameter τ ,
also known as the learning parameter, plays a pivotal role in
determining the rate and precision of self-adaptation. Both
theoretical and empirical studies provide guidance on the
selection of the τ value. Specifically, it is recommended that
τ be chosen in relation to the number of variables N , using
the formula τ ≈ 1√

N
.

“Two-Point Rule” σ−Adaptation. The process of determining
the value of σ employs a probabilistic mechanism, akin to a

coin flip. This method involves adjusting σ to either σ/α or σ·α,
contingent on whether a value generated by a uniform random
source exceeds or is less than or equal to 0.5. In this context,
uniform(0, 1) denotes the uniform random source, while α is
identified as a learning parameter. Beyer’s research [16], posits
that an optimal performance is achieved when α is set to 1+τ .

2) Non-isotropic Mutations: For the non-isotropic Gaussian
mutation, we consider two methods of adaptation, described
next.
Selective Covariance Matrix Adaptation. The selective
correlation C is performed between the m randomly selected
elements of zi,m ⊂ i, such that the pdf is denoted as

fZ (zm) =
1

√
2π

m√
|C|

e−
1
2z

TC−1z,

where |C| is the determinant of the matrix C, and C−1 denotes
the inverse. Then the σ’s are adapted as follows:

zm= C (σ1N1(0, 1), σ2N2(0, 1), ..., σmNm(0, 1))
T
,

and the remaining i − m elements of zi−m are adjusted
according the adaptation method introduced next.
Extended Multiplicative (Log-Normal) σ−Adaptation. The
previously discussed log-normal operator can be expanded as
follows:

σ̂ = eτ0N0(0,1)
(
σ1eτN1(0,1), ..., σNeτNN(0,1)

)
.

This extension introduces a general mutative multiplier with
a learning parameter of τ0, and individual mutations for each
coordinate with a learning parameter of τ . Each component of
σ undergoes independent mutation, and subsequently, the entire
vector is mutatively scaled by the random factor eτ0N0(0,1).
This method facilitates the learning of axes-parallel mutation
ellipsoids. The recommended learning parameters are:

τ0 =
c√
2N

,

and
τ =

c√
2
√
N

,

where c = 1 is a suitable choice, as suggested in [13].

C. Reproduction

For the reproduction operator, we consider 2 < ρ ≤ µ;
thus, we will choose ρ parents for random reproduction with a
uniform distribution. The parents taking part in the production
of the offspring are

Ψ =
(
ai1 , ..., air , ..., aiρ

)
,

for r ∈ {1, ..., ρ}, and ir =uniform(1, µ).

D. Recombination

We will base the recombination operator on the genetic
repair (GR) hypothesis introduced by Bayer [13]. Having
that ρ > 2, we will have multirecombination, and we
will be using intermediate ρ−recombination, and dominant
ρ−recombination.

1) Genetic Repair (GR): In the 1990s, research into ES [13],
[16], unveiled a recombination mechanism known as the genetic
repair (GR) effect. This theory suggests that recombination
identifies and extracts similarities from the parent genomes. It is
a reasonable assumption that components of the parent genomes
that exhibit similarity are likely to have a higher probability
of contributing positively to the fitness of the offspring, given
that these components are present in the fittest, or selected,
individuals. From the standpoint of maximum entropy, the
optimal strategy for a variation operator is to conserve these
beneficial components. Other components, in contrast, may be
less pertinent or even detrimental. This theoretical framework
gives rise to the intermediate ρ−recombination concept.

2) Intermediate ρ−Recombination and Dominant
ρ−Recombination: The process of intermediate
ρ−recombination and dominant ρ−recombination, both
integral to the generation of a descendant r, can be elucidated
as follows:

In the case of intermediate ρ−recombination, a descendant
’r’ is produced based on the centroid of rho randomly chosen
parent entities. This process can be mathematically represented
as:

r = ⟨w⟩ρ =
1

ρ

ρ∑
ν=1

wν .

On the other hand, dominant ρ−recombination, which also
adheres to the Genetic Repair (GR) hypothesis, formulates a
new descendant r by randomly selecting the k−th component
of an individual mk, chosen uniformly at random. This can be
mathematically depicted as:

r= ⟨wmk
⟩k ,

where mk = uniform (1, ρ).

V. EXPERIMENTS AND RESULTS

The process of experimentation and the results obtained are
discussed in detail next.

A. Design of Experiments

In our study, we conducted a comprehensive set of ex-
periments comprising eight basic combinations, each varying
in several parameters. The parameters included the number
of parents (µ), ranging from 10 to 100 in increments of
10, yielding ten distinct combinations. Similarly, the number
of parents for recombination (ρ) varied from 10 to 100 in
increments of 10, resulting in ten combinations.

The number of children (µ) was set to 10, 100, or 1000,
providing three unique combinations. The initial σ value varied
from 1 to 10, creating ten combinations. The number of
generations to stop (g) was also varied from 10 to 100 in
increments of 10, resulting in ten different combinations.

The mutation operator was varied in five distinct ways,
including isotropic and non-isotropic variations. The isotropic
variations included the 1

5 th Rule σ-Adaptation, Multiplicative
(Log-Normal) σ-Adaptation, and the ”Two-Point Rule” σ-
Adaptation. The non-isotropic variations included the Selective

Fig. 3. Fitness behavior varying µ and ρ.

Covariance Matrix Adaptation for a fixed size of 100 × 100
elements and the Extended Multiplicative (Log-Normal) σ-
Adaptation.

The recombination operator was varied in two ways: Inter-
mediate ρ-Recombination and Dominant ρ-Recombination.

In total, these variations resulted in 300,000 unique experi-
ments, calculated as (10)(10)(3)(10)(10)(5)(2).

These experiments were performed on a classic benchmark
dataset, namely the two spirals dataset [18], to test non-trivial
2D class separation. The architecture used for this dataset was
[2, 128, 64, 32, 16, 8, 4, 1].

1) Deep Neural Network Validation: The experiments yield
an initialized neural network, which is trained using the resilient
backpropagation algorithm, denoted as the trainrp method. The
Deep Neural Network (DNN) training is conducted ten times
to observe two key events. The first event is the time taken
to reach the desired minimum error, and the second event is
the minimum error reached after the desired number of epochs
have been completed.

2) Termination Condition: The termination condition forms
a crucial aspect of these experiments. We propose that all
experiments should have termination conditions for both the
deep neural networks (BP) and the Evolution Strategies (ES).
The conditions include achieving an error below 10−3 for both
BP and ES. In terms of iterations, for BP, the termination
condition is set at 10, 000 epochs. In contrast, ES is set at 100
generations, following the experiments in [7] and our previous
work [19].

The architectures of the deep neural networks are determined
by the computing and memory capabilities of the equipment
used to perform these experiments.

B. Results

The behavior of the (µ/ρ+ λ)−ES for the spiral dataset is
illustrated in several figures. The data obtained were averaged
over the 300,000 experiments for those variables not depicted
in the figures.

Fig. 4. Fitness behavior varying µ and the type of recombination (1=interme-
diate, 2=dominant).

Fig. 5. Fitness behavior varying λ and µ.

Fig. 6. Fitness behavior varying ρ and λ.

Fig. 7. Fitness behavior varying the mutation strength σ across generations.

Fig. 8. Time behavior varying the number of generations and the number of
children λ.

Fig. 9. An example of the best configuration: (10/10 + 30)−ES.

Fig. 3 demonstrates the impact on the fitness F (ŵ) while
varying µ and ρ. The influence of µ versus the recombination
type is depicted in Fig. 4, while λ versus µ is shown in Fig. 5.
Fig. 6 presents the variation of ρ and λ, and Fig. 7 illustrates
the variation of generations versus mutation strength σ. The
response in time, measured by the most critical factors, the
number of generations and the number of children λ, is shown
in Fig. 8.

The results indicate that the minimum fitness was achieved
using the configuration of (10/10+30)−ES, Isotropic Mutation
with the 1

5 th rule, initial Mutation Strength σ = 1, and
Intermediate-ρ recombination. Fig. 9 depicts an experiment
using this configuration.

The results of several realizations using the configuration
(10/10+30)−ES and employing cross-validation indicate that
initializing the weights with our ES achieves a Mean Squared
Error (MSE) of 0.018, for a 100% accuracy in 180 seconds,
as shown in Fig. 10.b and Fig. 11.b. Compared to the Nguyen-
Widrow method, which achieves an error of 0.009 in 127
epochs and 4.9 seconds (Fig. 10.c and Fig. 11.c), our method
performs worse. However, when compared to the traditional
zero-initialization method, which achieves an error of 0.068
for a 98% accuracy in 298 seconds (Fig. 10.a and Fig. 11.a),
our method performs better.

VI. RELATED WORK

Evolution Strategies (ES) is a robust optimization algorithm
that can be applied to various domains. Different versions of
ES have been developed, such as (1 + 1)-ES, Higher Order
(µ/ρ, λ)-ES, and Niching κ(µ/ρ+ λ)-ES [20]. These versions
of ES provide different strategies for balancing exploration and
exploitation during the optimization process.

In the context of global optimization, researchers have
proposed hybrid algorithms that combine ES with other
techniques to improve performance. For example, a hybrid
algorithm that combines a modified Nelder-Mead method with
a self-adaptive evolution strategy has been developed [21].
This algorithm incorporates an adaptive contraction criterion
to enhance global exploration ability.

The theoretical analysis of ES has also been explored.
The (µ, λ)-Theory analyzes the multimembered ES for real-
valued, high-dimensional parameter spaces [22]. This analysis
provides insights into the behavior of ES and its application
to optimization problems.

Furthermore, ES has been applied to constrained evolutionary
optimization. One study focused on (µ, λ)-Differential Evolu-
tion, which is an extension of ES, and proposed an improved
adaptive trade-off model [23]. This model enhances the
algorithm’s exploration ability by exploiting the population’s
feasibility proportion.

However, as far as we know, there are no works on (µ/ρ+λ)-
ES that have been studied to better position a dense, deep neural
network in a parameter space that can aid backpropagation
reach a good quality local minima.

Fig. 10. Training performance: a) BP training with zero weight initialization. b) BP training with (10/10 + 30)−ES initialization. c) BP training with
Nguyen-Widrow method.

a) After BP with zero initialization. b) After BP and (10/10 + 30)−ES init. c) After BP with Nguyen-Widrow init.

Fig. 11. Mapping dataset and hyperplane decision boundaries across different settings.

VII. CONCLUSIONS

While there exists research that employs Evolution Strategies
(ES) to train neural networks [4]–[6], [8], [9], the integration of
both schemes within a deep neural network framework remains
an open problem. This is primarily because, as demonstrated
in [7], ES performs comparably to Backpropagation (BP) only
for smaller problems.

In this study, we have extended the application of ES to
high-dimensional problems by using it to initialize the weights
of a Deep Neural Network (DNN). Our experiments have
shown that the proposed ES can overcome local minima and
converge towards near-optimal global solutions. Following the
ES initialization, we employed traditional BP gradient methods
to further refine the weights based on the initial set provided
by ES.

A significant finding of this research is that using Evolution
Strategies can reduce the computational time required by
traditional gradient-based backpropagation learning methods.
This is achieved by providing an initial set of weights close
to the good-quality local minima, enabling the network to
converge faster than random or zero-weight initialization
approaches. This approach offers a promising direction for
future research in the efficient training deep neural networks.

ACKNOWLEDGMENT

The ML model is based upon work supported in part by the
National Science Foundation under Grant 2210091.

REFERENCES

[1] X. Yu, “Can backpropagation error surface not have local minima,”
Neural Networks, IEEE Transactions on, vol. 3, no. 6, pp. 1019–1021,
1992.

[2] E. Chen, X. Yang, H. Zha, R. Zhang, and W. Zhang, “Learning object
classes from image thumbnails through deep neural networks,” in
Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE
International Conference on. IEEE, 2008, pp. 829–832.

[3] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Exploring
strategies for training deep neural networks,” Journal of Machine
Learning Research, vol. 10, pp. 1–40, 2009.

[4] S.-C. Ng, L. Shu-Hung, and A. Luk, “A hybrid algorithm of weight
evolution and generalized back-propagation for finding global minimum,”
in Neural Networks, 1999. IJCNN ’99. International Joint Conference
on, vol. 6. IEEE, 1999, pp. 4037–4042.

[5] S. Ng, S. Leung, and A. Luk, “Evolution strategies on connection weights
into modified gradient function for multi-layer neural networks,” in Neural
Networks, 2005. IJCNN ’05. Proceedings. 2005 IEEE International Joint
Conference on, vol. 3. IEEE, 2005, pp. 1371–1376.

[6] S.-C. Ng, S. Leung, and A. Luk, “A generalized backpropagation
algorithm for faster convergence,” in Neural Networks, 1996., IEEE
International Conference on, vol. 1. IEEE, 1996, pp. 409–413.

[7] M. Mandischer, “A comparison of evolution strategies and backpropaga-
tion for neural network training,” Neurocomputing, vol. 42, no. 1, pp.
87–117, 2002.

[8] J. Hagg, B. Curuklu, B. Akan, and L. Asplund, “Gesture recognition
using evolution strategy neural network,” in Emerging Technologies and
Factory Automation, 2008. ETFA 2008. IEEE International Conference
on. IEEE, 2008, pp. 245–248.

[9] A. Berlanga, P. Isasi, A. Sanchis, and J. Molina, “Neural networks robot
controller trained with evolution strategies,” in Evolutionary Computation,
1999. CEC 99. Proceedings of the 1999 Congress on, vol. 1. IEEE,
1999, p. 419.

[10] F. Kursawe, “A variant of evolution strategies for vector optimization,”
in Parallel Problem Solving from Nature. 1st Workshop, PPSN I, ser.

Lecture Notes in Computer Science, vol. 496. Springer, 1991, pp.
193–197.

[11] P. Rivas-Perea, J. Cota-Ruiz, D. G. Chaparro, A. Q. Carreón, F. J. E.
Aguilera, and J.-G. Rosiles, “Forecasting the demand of short-term
electric power load with large-scale lp-svr,” Smart Grid and Renewable
Energy, vol. 4, pp. 449–457, 2013.

[12] S. Haykin, Neural Networks and Learning Machines. Prentice Hall,
2008.

[13] H.-G. Beyer, The theory of evolution strategies. Springer Science &
Business Media, 2001.

[14] T. Back, F. Hoffmeister, and H. Schwefel, “A survey of evolution
strategies,” in Fourth International Conference on Genetic Algorithms.
Morgan Kaufmann, 1991, pp. 2–9.

[15] T. Bäck, D. B. Fogel, and Z. Michalewicz, “Handbook of evolutionary
computation,” Release, vol. 97, no. 1, p. B1, 1997.

[16] H. Beyer and H. Schwefel, “Evolution strategies –a comprehensive
introduction,” Natural Computing: an international journal, vol. 1, pp.
3–52, 2002.

[17] E. Cantú-Paz, J. A. Foster, K. Deb, D. Lawrence, R. Roy, U.-M.
O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson et al.,
Genetic and Evolutionary Computation-GECCO 2003: Genetic and
Evolutionary Computation Conference, Chicago, IL, USA, July 12-16,
2003, Proceedings, Part I. Springer, 2003, vol. 2723.

[18] K. J. Lang and M. J. Witbrock, “Learning to tell two spirals apart,”
in Proceedings 1988 Connectionist Models Summer School. Morgan
Kaufmann, 1988, pp. 52–59.

[19] M. I. Chacon M. and P. Rivas-Perea, “Performance analysis of the
feedforward and som neural networks in the face recognition problem,” in
Proceedings of the 2007 IEEE Symposium on Computational Intelligence
in Image and Signal Processing (CIISP 2007). IEEE, 2007, pp. 313–318.

[20] M. Jaindl, A. Köstinger, C. Magele, and W. Renhart, “Multi-objective
optimization using evolution strategies,” Facta universitatis-series: Elec-
tronics and Energetics, vol. 22, no. 2, pp. 159–174, 2009.

[21] N. Boukhari, F. Debbat, N. Monmarché, and M. Slimane, “An efficient
hybrid evolution strategy algorithm with direct search method for global
optimization,” International Journal of Organizational and Collective
Intelligence (IJOCI), vol. 9, no. 3, pp. 63–78, 2019.

[22] H.-G. Beyer, “Toward a theory of evolution strategies: The (µ, λ)-theory,”
Evolutionary Computation, vol. 2, no. 4, pp. 381–407, 1994.

[23] Y. Wang and Z. Cai, “Constrained evolutionary optimization by means
of (µ+ λ)-differential evolution and improved adaptive trade-off model,”
Evolutionary Computation, vol. 19, no. 2, pp. 249–285, 2011.

	Introduction
	Deep Neural Networks
	Evolution Strategies Theoretical Background
	Sigma/Rho + Lambda Evolution Strategy, (/ +)-ES
	Initializing a Deep Neural Network with (/ +)-ES

	Genetic Operators
	Selection
	Mutation
	Isotropic Mutations
	Non-isotropic Mutations

	Reproduction
	Recombination
	Genetic Repair (GR)
	Intermediate -Recombination and Dominant -Recombination

	Experiments and Results
	Design of Experiments
	Deep Neural Network Validation
	Termination Condition

	Results

	Related Work
	Conclusions
	References

