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Abstract. Automated evaluation of open-ended student work remains
a challenge in educational technology. In the context of SQL query as-
sessment, existing models often rely on rigid heuristics or underfit archi-
tectures that fail to generalize. Here we present a multi-objective neu-
ral model whose architecture and hyperparameters are optimized using
evolution strategies (ES). Our model jointly predicts query correctness,
diagnostic remarks, and numerical grades from raw student submissions.
We show that this approach improves classification accuracy and robust-
ness across underrepresented feedback classes, while maintaining inter-
pretability. These findings demonstrate the utility of ES in discovering
high-performing configurations for complex assessment tasks.

Keywords: evolution strategies, neural architecture search
Regular Research Paper

1 Introduction

In contemporary education, automated assessment technologies have become
valuable tools for supporting student learning, particularly by providing imme-
diate feedback on programming and query languages such as Structured Query
Language (SQL). As the complexity and volume of student submissions grow,
these systems help students assess and refine their work before it undergoes fi-
nal evaluation by human instructors. Consequently, researchers and educators
have turned to automated grading systems powered by machine learning to en-
hance the accuracy, efficiency, and reliability of assessment processes [38,47,18].
In this context, automated SQL grading systems offer the dual benefit of provid-
ing prompt, constructive feedback and supporting the development of essential
database management skills among students [47,18]. Prior studies further demon-
strate that such systems can move beyond binary correctness assessments to offer
insightful explanations, thereby fostering deeper learning outcomes [18,9,16].

Despite these advances, automated grading of SQL statements remains a
challenging task due to the syntactic intricacies and logical complexities inher-
ent in query formulation. Effective solutions must incorporate models capable
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of understanding not only the syntactic structure but also the semantic implica-
tions of SQL statements. In this regard, Rivas et al. [30] introduced the use of
BERT, a transformer-based model known for its contextual representation capa-
bilities, to improve the automatic grading of SQL statements, achieving notable
gains in both accuracy and robustness. Building upon this foundation, Rivas and
Schwartz [32] proposed attention-based Convolutional Neural Networks (CNNs)
for modeling SQL statement correctness, demonstrating that deep learning ar-
chitectures can successfully capture critical contextual dependencies often over-
looked by simpler models. Additionally, Rivas [29] highlighted the critical role of
explainable artificial intelligence (XAI) in this domain, advocating for grading
models that not only produce correctness scores but also provide meaningful and
actionable feedback to guide student learning.

Among the various machine learning models explored for SQL grading, CNNs
have emerged as particularly effective due to their ability to extract hierarchi-
cal feature representations and their adaptability for processing sequential data
[2,5]. The integration of attention mechanisms into CNN architectures further
enhances their capacity to focus on the most relevant components of SQL queries,
thereby improving the model’s comprehension of complex query structures [46].
This combination of CNNs and attention mechanisms enables the development
of more sophisticated grading systems capable of delivering nuanced evaluations
that extend beyond simplistic correctness assessments [9,46].

Parallel to advancements in model architectures, the optimization of hy-
perparameters remains a critical factor in improving machine learning model
performance, including that of CNN-based grading systems. Careful tuning of
hyperparameters such as learning rate, batch size, and network depth has a
profound impact on predictive accuracy and model generalization [36,51]. Ef-
fective hyperparameter optimization not only enhances model performance but
also mitigates overfitting, ensuring reliable predictions on previously unseen data
[51,26]. Evolutionary strategies (ES), including the (µ/ρ + λ) approach, offer a
compelling alternative to conventional heuristic methods by systematically nav-
igating the hyperparameter search space through biologically inspired selection
and adaptation mechanisms [28,22]. These strategies have consistently demon-
strated their effectiveness in optimizing complex deep learning models, including
CNNs, across a variety of application domains [44,25].

In this study, we present a comprehensive approach that applies the (µ/ρ+λ)
evolution strategy to jointly optimize both the architecture and hyperparameters
of a CNN augmented with attention mechanisms. The proposed framework aims
to develop a robust automated grading system for SQL statements, capable of
producing comprehensive correctness scores, detailed explanatory feedback, and
final grade assignments. By synthesizing prior advances in automated SQL grad-
ing [30,32], CNN-based SQL understanding, and state-of-the-art hyperparameter
optimization through evolutionary strategies, this research contributes a novel
and scalable solution to the challenges of automated assessment. Ultimately, this
work aspires to advance the state of AI-driven educational tools by delivering
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reliable, explainable, and high-performance automated grading systems, thereby
fostering effective and engaging learning environments in database education.

2 Related Work

The rapid advancement of artificial intelligence in education has led to significant
research efforts aimed at improving automated assessment systems. This section
reviews the most relevant prior work across three key areas central to the present
study: automated systems for SQL grading, using CNNs for grading tasks in
broader contexts, and using ES for hyperparameter optimization. By examining
these areas, we establish the foundation upon which the proposed framework
builds and identify the gaps this research aims to address.

2.1 SQL Automated Grading Systems

The evolution of automated SQL grading systems has advanced significantly
over the past decade. Traditionally, these systems have taken one of two overall
approaches: static analysis or dynamic analysis.

The static approach evaluates the structure of the query itself, without actu-
ally running the query against a dataset. Each submitted query is compared to a
set of answer-key queries. This approach can involve using string similarity met-
rics [39], automated SQL provers [8], unbounded semirings [7], abstract syntax
trees and cosine similarity functions [13], or graph-based approaches [19]. The
static analysis approach is frequently good at identifying correct queries, but
providing answer-key queries for all possible correct ways to construct a given
query can be a huge undertaking. These models are not well-suited to provide
partial credit for incorrect queries, although some provide feedback about how
many changes would be required to correct the submitted query.

The dynamic approach executes queries against fixed datasets and compares
the results with a set of correct answers. Early examples include [33,10,24]. More
recent systems show improvements [17,41]. This approach is excellent at identify-
ing incorrect queries, but these systems often struggle with accurately identifying
correct queries. Since they are simply comparing the results of student-submitted
queries with the answer-key results, they frequently provide inaccurate results.
This is especially true when a query just happens to return a correct result (for
example, “name all red parts” and “name all parts that were shipped from Nor-
way” might produce the same results) or returns an empty table (an infinite
number of queries can yield no answer records).

Given the shortcomings of each approach and recognizing the importance
of awarding partial credit to incorrect queries, some systems combine the two
in a hybrid approach. Most of these hybrid systems use dynamic analysis to
identify the incorrect queries, then the static approach to try to award partial
credit [18,45,6,23,11]. More recent examples include [48,12].

More recently, researchers are exploring how Artificial Intelligence can be
used to provide feedback on student-submitted SQL queries. Weston, et al. [49]



4 P. Rivas et al.

describe a system that extracts features of students’ SQL queries that instructors
find significant. It then uses those features to cluster queries to allow instructors
to identify trends that appear in the student submissions. Hamtini and Assaf [14]
compared the feasibility of using ChatGPT, Gemini and Copilot to grade stu-
dent SQL queries, comparing the results from the generative AI systems with
the grading results of human experts. Initial findings showed that the GenAI
approaches were more useful at assisting human experts than they were at tak-
ing over the grading tasks themselves but suggested that responses the system
made about student errors could be tailored to help the systems learn better.

2.2 CNN-Based Grading Methods

The application of CNNs in automated grading extends beyond SQL, finding
success in programming assignment evaluation, natural language response as-
sessment, and structured content analysis. CNNs excel at learning hierarchical
feature representations, enabling the capture of both local and global dependen-
cies essential for accurate grading [2,5]. Recent advancements have integrated at-
tention mechanisms into CNN architectures, further improving contextual under-
standing by directing the model’s focus toward semantically relevant input [46].

In programming education, CNNs have been applied to analyze code struc-
ture and syntax across various languages. Yang [52] demonstrated the effec-
tiveness of CNNs with recurrent neural filters in processing structured data se-
quences, highlighting their utility for code analysis tasks. Attention-enhanced
CNNs have also shown promise in improving feedback quality by identifying
critical code segments that impact correctness [53]. In natural language grading,
CNNs have been used to assess text responses, offering nuanced evaluations of co-
herence and argument completeness. Yin et al. [53] introduced attention-based
CNN models for sentence pair modeling, demonstrating their superiority over
traditional feature engineering approaches in capturing semantic relationships.

The Convolutional Block Attention Module (CBAM) proposed by Woo et al.
further exemplifies the refinement of CNN-based models through attention inte-
gration, allowing adaptive feature selection that enhances model interpretability
and grading accuracy [50]. Additionally, hybrid architectures combining CNNs
with Recurrent Neural Networks (RNNs) have been explored to improve the
modeling of sequential dependencies in student submissions, particularly in pro-
gramming and response generation tasks [20]. Our study uses multi-headed at-
tention heads instead, following a more modern approach similar to transformers.

2.3 Evolutionary Strategies for Hyperparameter Optimization

Evolutionary strategies (ES) have been used for hyperparameter optimization in
machine learning, addressing the challenges posed by complex model architec-
tures and large hyperparameter spaces. Inspired by natural selection, ES offer ro-
bust search capabilities through adaptive selection, mutation, and recombination
[1,4]. Among these, the (µ/ρ+ λ)-ES stands out for its efficiency in identifying
high-performing configurations, particularly in deep learning models [21,35].
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Compared to grid search and random search, which suffer from inefficiency
and lack of guidance, ES provide a structured exploration of the search space,
avoiding the pitfalls of exhaustive or purely stochastic approaches [55]. While
Bayesian optimization offers probabilistic modeling, it can be limited by its de-
pendency on initial samples and assumptions about the search landscape [1,21].
ES methods, in contrast, adaptively refine populations of solutions, yielding com-
petitive results even in high-dimensional optimization problems [35,40].

CMA-ES, a leading ES variant, leverages covariance matrices to capture in-
terdependencies among parameters, facilitating efficient navigation of complex
search spaces [1,21]. Applications of ES extend to neural architecture search,
where strategies like those proposed by Suganuma et al. successfully optimize
network structures for task-specific performance gains [40]. Additionally, the in-
tegration of ES with reinforcement learning and multi-objective optimization
frameworks further enhances their versatility in discovering architectures that
balance performance with computational efficiency [4,27]. Despite higher com-
putational costs, the flexibility and effectiveness of ES make them a valuable tool
for hyperparameter and architecture optimization in modern AI systems [54].

3 Methodology

This section outlines the proposed approach for automated SQL grading using a
CNN architecture enhanced with attention mechanisms. We also detail the appli-
cation of the (µ/ρ+ λ) Evolutionary Strategy for hyperparameter optimization
and provide a comprehensive description of the dataset used for evaluation.

3.1 Neural Network Architecture

We proposed a parameterized CNN to assess SQL query submissions through
multi-task learning. The model simultaneously predicts three outputs: (1) query
correctness, (2) explanatory remarks, and (3) a numerical grade. Formally, given
an input query x ∈ ZT , the model computes a shared latent representation
h ∈ Rd, from which the outputs are derived through separate prediction heads.

Embedding Layer. The input queries are tokenized and converted into sequences
of integers corresponding to a learned vocabulary V, with size |V| = v. An
embedding matrix E ∈ Rv×de maps each token to a de-dimensional continuous
vector, where de is the embedding dimension, leading to a dense representation:

Xe = Embedding(x) ∈ RT×de . (1)

Convolutional Feature Extractors. The embedded sequence is processed by mul-
tiple 1D convolutional layers with varying kernel sizes {k1, . . . , kn} and F filters
per layer. For each kernel size ki, the convolutional transformation is given by:

C(i) = ReLU (Conv1Dki
(Xe)) . (2)

The outputs of the convolutional layers are concatenated along the feature di-
mension, producing a comprehensive local feature representation.
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Attention Mechanisms. To capture long-range dependencies, the model uses ei-
ther standard additive attention or Multi-Head Attention (MHA) [42], depending
on the hyperparameter used. When MHA is used, the attention output is:

MHA(Q,K,V) = Concat(head1, . . . ,headH)WO, (3)

where Q, K, and V are query, key, and value matrices derived from the input
features, and H is the number of attention heads.

Pooling and Bottleneck Layer. To reduce the variable-length sequence represen-
tations to fixed-size vectors, the model applies either global average pooling,
global max pooling, or a concatenation of both. The pooled features are passed
through a bottleneck layer implemented as a fully connected layer with dimen-
sionality db and activation function σb:

h = σb (Wbz+ bb) , (4)

where z is the concatenated pooled representation, and Wb ∈ Rdb×dim(z).

Output Heads. The shared latent representation h is connected to three separate
prediction heads:

1. Correctness: A sigmoid-activated neuron computes the binary correctness
probability:

ŷcorrect = σ
(
w⊤

c h+ bc
)
. (5)

2. Remarks: A softmax layer predicts one of four feedback remarks:

ŷremarks = softmax (Wrh+ br) . (6)

3. Grade: A regression output predicts the normalized grade using a sigmoid
activation:

ŷgrade = σ
(
w⊤

g h+ bg
)
. (7)

Loss Function. The model is trained using a weighted multi-objective loss:

L = λcLBCE(ŷcorrect, ycorrect)+λrLBCE(ŷremark,yremark)+λgLMSE(ŷgrade, ygrade),

where LBCE denotes the binary cross-entropy loss, LMSE the mean squared error
loss, and λc = 0.142, λr = 0.740, λg = 0.118 are empirically determined weights.

Optimization. Training is performed using either the Adam or RMSprop op-
timizer, with a learning rate η selected through hyperparameter tuning. Early
stopping and learning rate reduction strategies are employed to prevent overfit-
ting and ensure convergence.

3.2 Hyperparameter Optimization Using Evolutionary Strategies

To optimize the hyperparameters of the proposed neural architecture, we employ
the (µ/ρ+λ)-ES, a population-based stochastic optimization algorithm inspired
by natural selection. This method is particularly suitable for exploring complex,
high-dimensional, and mixed-type hyperparameter spaces such as ours [31].
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Algorithmic Framework. At each generation, a parent population of size µ is
selected based on the highest validation Area Under the Curve (AUC) scores.
Offspring are generated by recombining ρ randomly selected parents from this
elite pool, producing λ new candidate solutions. The evolutionary cycle consists
of selection, recombination, mutation, and evaluation steps.

Recombination. Given a set of ρ parents {p1, . . . ,pρ}, the offspring o is produced
by parameter-wise recombination:

oj =


1
ρ

∑ρ
i=1 pi,j if θj ∈ R (continuous parameter),

round
(

1
ρ

∑ρ
i=1 pi,j

)
if θj ∈ Z (integer parameter),

random_choice({p1,j , . . . , pρ,j}) if θj ∈ categorical.

Here, θj denotes the j-th hyperparameter, and the offspring parameter oj inherits
its value based on the type of parameter.

Mutation. Each offspring undergoes probabilistic mutation with rate γ. Muta-
tion strategies are adapted based on parameter types:

– Continuous Parameters: Additive Gaussian noise:

oj ←
∣∣oj +N (0, σ2)

∣∣ .
– Integer Parameters: Random integer offset within a predefined range:

oj ← max(2, oj +∆), ∆ ∼ Uniform[−k, k].

– Categorical Parameters: Random reassignment with probability γ.

Mutation parameters, including the mutation rate γ and standard deviation σ,
are adaptively adjusted using the 1/5th success rule [3]:

γ ←

{
γ/a if Ps >

1
5 ,

γ · a if Ps <
1
5 ,

where Ps is the success rate over G generations, and a ∈ [0.85, 1) is a predefined
and well-known adaptation factor.

Evaluation and Selection. Each offspring is evaluated by training the neural
network with the proposed hyperparameters. Performance is assessed using the
validation AUC. Individuals with previously evaluated configurations retrieve
their performance scores directly, avoiding redundant evaluations.

Parallel Execution. To efficiently manage computational resources, the evalu-
ation of candidate solutions is parallelized across multiple GPUs using a job
scheduling mechanism. This enables simultaneous model training runs.
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Termination Criterion. The algorithm iterates for a maximum of Gmax genera-
tions or until convergence, defined by no significant improvement in the average
validation AUC across successive generations.

Summary. The (µ/ρ+λ) Evolutionary Strategy offers an effective and adaptive
mechanism for hyperparameter optimization, enabling the discovery of high-
performing configurations in a complex search space. By integrating adaptive
mutation rates, intelligent recombination, and parallel evaluation, the approach
balances exploration and exploitation, leading to improved model performance.

3.3 Dataset Description

The dataset used in this study is a curated and augmented collection of SQL
query submissions from undergraduate coursework, designed to support model
training and evaluation in structured query understanding. The core dataset,
publicly available in [15], initially comprised 675 annotated submissions. These
samples were labeled with correctness, numeric grades, and explanatory remarks
(Correct, Partially Correct, Non-Interpretable, and Cheating) to facilitate super-
vised learning [32,34]. To expand coverage and improve model generalization
across a broader range of query styles and schema complexities, we augmented
the original dataset with thousands of additional SQL submissions sourced from
a college-level introductory database course. After preprocessing and filtering,
the final training and validation corpus consists of 4,918 student-submitted SQL
queries. Of these, approximately 55% are labeled as correct, and the mean grade
is 84.3 out of 100, indicating a moderate class imbalance and a skew toward
higher-performing submissions.

Each query in this corpus was preprocessed using word-level tokenization [43],
resulting in a vocabulary of 1,480 tokens. All sequences were padded to a fixed
length of 219 tokens to ensure uniformity during batch training.

In addition to the training corpus, a separate test set of 2,577 previously
unseen SQL submissions was held out for final model evaluation. This set exhibits
slightly higher correctness rates, with 59% of the queries labeled correct and an
average grade of 87.4. The inclusion of this test set ensures rigorous validation
on student samples not encountered during model development.

An overview of the dataset is shown in Table 1, and an example SQL query
from the dataset is provided below.

SELECT DISTINCT s.SNum FROM Snacks s, Vendors v, Delivers d, Parks p
WHERE v.HQLoc = ’LosAngeles’ AND p.Location = ’LosAngeles’
AND v.VNum = d.VNum AND s.SNum = d.SNum AND p.PNum = d.PNum;

4 Experiments and Results

4.1 Experimental Setup

The experimental evaluation focuses on optimizing the neural network archi-
tecture and its hyperparameters using the (µ/ρ + λ)-ES. The objective is to
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Table 1: Sample Data Extracted From Expanded Dataset

Submitted Answer Correct? Remark Grade
SELECT * FROM parks WHERE location = ’LA’; 1 Correct 100
Select * From Delivers Where Amnt >= 300 <= 750; 0 Partially 20
...

...
...

...
Total count: 5,398 Avg: 0.58 Total: 4 Avg: 85

maximize the validation AUC for the correctness prediction task while simulta-
neously producing meaningful feedback remarks and grade estimations.

Optimization Objectives. The hyperparameter optimization process focused on
tuning both architectural and training-related parameters. On the architectural
side, the vocabulary size v was varied in the range [2, 65536], and the embed-
ding dimension de was explored within [2, 4096]. The number of convolutional
filters F spanned values from 2 to 2048. Kernel size configurations included
both single and multi-kernel combinations selected from the set {3, 4, 5, 6, 7, 8}.
When multiple kernel sizes were specified, such as 3|4|5, the model applied
parallel convolutional layers, one per kernel size, and concatenated their out-
puts along the feature dimension. The use of multi-head attention was treated
as a binary decision (True or False), with the number of attention heads H
ranging from 1 to 52. Three pooling strategies were considered: average pooling
(avg), max pooling (max), and a hybrid of both (avg_max). The bottleneck layer
dimension db ranged from 1 to 1024, and the activation functions examined in-
cluded relu, tanh, gelu, and selu. Dropout rates γ were sampled continuously
between 0.0001 and 0.9990. For the training configuration, the optimizer was
chosen from adam and rmsprop, and the learning rate η was optimized in the
interval [3.32 × 10−7, 5.41 × 10−3]. These hyperparameters were explored using
the ES discussed earlier.

Search Process. The ES optimization was performed over a population of µ = 16
parents and λ = 16 offspring per generation, for a total of 25 generations. Re-
combination and mutation operators were applied to explore the hyperparame-
ter space, and candidate configurations were evaluated based on the validation
AUC. Mutation rates and perturbation magnitudes were adaptively adjusted
using the 1/5th success rule to balance exploration and exploitation of the pa-
rameter space. This process was repeated with different initial populations.

Evaluation Protocol. Each individual configuration was evaluated using a strati-
fied train-validation split, and models were trained until convergence using early
stopping and learning rate scheduling. Validation AUC scores were recorded and
used to guide the evolutionary search. Parallel GPU resources were leveraged to
efficiently evaluate multiple configurations concurrently.
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4.2 Results from (µ/ρ + λ)-ES

Table 2 summarizes the top 10 hyperparameter configurations identified through
evolutionary search, ranked by validation AUC on the correctness prediction
task. Each row corresponds to a unique model instance defined by architectural
and training-related settings, including vocabulary size, embedding dimension,
number of convolutional filters, kernel size combinations, use of multi-head atten-
tion (MHA), pooling strategy, bottleneck layer characteristics, optimizer type,
dropout rate, and learning rate. These configurations reflect the most performant
trade-offs between expressiveness and regularization observed during training.

To visualize the structure of the high-dimensional hyperparameter space, we
projected the results of all evaluated configurations into two dimensions using
principal component analysis (PCA). Each hyperparameter configuration, in-
cluding both numeric and categorical features, was encoded and standardized
prior to projection. Categorical variables were transformed via one-hot encod-
ing, and the full feature matrix was scaled using z-score normalization. We then
applied PCA to reduce the 12-dimensional configuration space to two principal
components, capturing the dominant axes of variation among configurations.

The resulting 2D coordinates were used to fit a smooth interpolation surface
over the validation AUC values using radial basis function (RBF) interpola-
tion. This surface approximates the underlying error landscape of the model’s
performance across the search space. As shown in Fig. 1, regions with higher
AUC are visible with a different color on the surface. The star indicates the
best-performing configuration discovered during search.

Notably, the initial grid search was used to populate a diverse set of configura-
tions across the landscape, and this served as the initialization for the subsequent
evolution strategy procedure described earlier in Section 3.2. This visualization
illustrates how the ES builds upon broad initial coverage and adapts search
toward local optima in performance.

4.3 Analysis of Hyperparameter Sensitivity

To better understand the influence of individual hyperparameters on model per-
formance, we performed a targeted analysis using Gaussian Process Regression
(GPR) [37]. For each continuous or integer hyperparameter, we extracted its

Table 2: Top 10 Hyperparameter Configurations (Ranked by Validation AUC)
Vocab Emb. Filters K. Sizes MHA Heads Pool Bneck A.F. Drop Opt LR

4596 321 246 3,4,5,7 Y 4 avg_max 92 gelu 0.0538 adam 5.03e-5
4440 347 242 3,4,5,6,7,8 N max 86 gelu 0.0412 adam 7.18e-5
4130 296 220 3,4,5,6,7,8 N avg_max 85 gelu 0.0543 adam 6.34e-5
4562 320 243 3,4,5,7 N avg_max 90 selu 0.0593 rmsprop 6.17e-5
4440 348 243 3,4,5,6,7,8 N avg_max 85 gelu 0.0563 rmsprop 8.66e-5
4452 359 238 3,4,5,6,7,8 Y 5 avg_max 89 relu 0.0576 adam 6.28e-5
2190 134 104 3,4,5,6,7,8 N avg_max 36 tanh 0.0840 adam 8.86e-5
4504 336 243 3,4,5,6,7,8 Y 6 avg_max 85 gelu 0.0531 adam 8.31e-5
4436 348 242 3,4,5,6,7,8 N max 81 gelu 0.0524 adam 5.91e-5
4000 384 300 3,4,5,6,7,8 N max 85 relu 0.0500 rmsprop 5.00e-5
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Fig. 1: PCA projection of the hyperparameter space with RBF-interpolated val-
idation AUC values. The contours indicate estimated model performance, with
cooler regions representing higher AUC. The star marks the best parameters.

values across all trials, computed the corresponding validation AUC scores, and
fit a GPR model to estimate the relationship between the parameter and model
performance. Each parameter was log-transformed to improve the fit and plot-
ted against the validation AUC. We also highlighted the top three configurations
yielding the highest AUC to identify optimal regions in the parameter space.

This approach allowed us to isolate the effect of each parameter while ac-
counting for noise and variance in other dimensions. Shaded regions around
each regression curve indicate the 68% and 95% confidence intervals, helping to
visualize uncertainty and performance trends. These plots, shown in Fig. 2–5,
support the analysis of sensitivity to learning rate, filter count, vocabulary size,
attention heads, bottleneck dimensionality, dropout rate, and embedding size.

To complement the analysis of continuous hyperparameters, we also exam-
ined the distribution of categorical parameters among the top-performing config-
urations. Fig. 6 (left) shows the validation AUC distributions for each optimizer
using a boxplot, emphasizing the relative performance of adam and rmsprop.
The right plot displays a histogram of kernel size combinations among the top
0.5% of configurations, revealing a strong preference for multi-scale convolution
(e.g., 3|4|5|6|7|8). These categorical analyses help identify non-numeric set-
tings that consistently appeared in the best solutions.

4.4 Discussion of Results and Model Improvements

We now present updated results for the final model configurations optimized
through evolutionary strategies. As before, the evaluation is organized into three
learning tasks: correctness classification (Model C), remark classification (Model R),
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Fig. 2: Effect of learning rate (left) and number of convolutional filters (right)
on validation AUC. Top-performing configurations are marked with a circle.

Fig. 3: Impact of number of attention heads (left) and vocabulary size (right) on
model performance.

Fig. 4: AUC sensitivity to bottleneck layer dimension (left) and dropout rate
(right). A low dropout value consistently outperformed higher rates.
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Fig. 5: Relationship between embedding dimension and validation AUC. Larger
embedding dimensions were correlated with improved performance.

Fig. 6: Left: Distribution of validation AUCs by optimizer type; Right: Frequency
of kernel size combinations among the top 0.5% of configurations.

and grade regression (Model G). All models were evaluated using leave-one-out
(LOO) cross-validation, for comparability with prior benchmarks [29,32,34].

Correctness Classification (Model C). Fig. 7 displays the confusion matrix and
ROC curve for the binary correctness prediction task. The model achieves a
balanced and overall accuracy of 88%, improving over earlier baselines. Precision
and recall are symmetric across both classes (Correct and Incorrect), with F1-
scores of 0.89 and 0.85, respectively. These gains reflect improved discrimination
and calibration despite the underlying class imbalance shown earlier in Table 1.

Remark Classification (Model R). Fig. 8 shows precision-recall curves and the
confusion matrix for Model R. Accuracy for this task reached 88%, a strong
result given the increased complexity of multi-class prediction. Performance was
especially strong on the dominant Correct and Partially Correct classes,
with F1-scores of 0.90 and 0.85, respectively. Notably, smaller classes such as
Non Interpretable and Cheating saw improvements compared to prior work,
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(a) Confusion matrix (b) ROC curve

Fig. 7: Correctness classification model (Model C): (a) Confusion matrix and (b)
ROC curve.

(a) Precision-recall curves (b) Confusion matrix

Fig. 8: Remark classification model (Model R): (a) Precision-recall curves and
(b) Confusion matrix.

achieving F1-scores of 0.86 and 0.86. These gains indicate that the revised
model generalizes better across both high- and low-frequency labels.

Grade Prediction (Model G). Fig. 9 presents results for the grade regression
model. The updated model exhibits stronger variance capture, with an explained
variance (EV) of 0.472, indicating improved sensitivity to signal fluctuations in
grade labels. However, the R2 metric is now negative (-0.015), which suggests
that while the model approximates the mean reasonably well, it struggles with



Multi-Objective CNN Design for SQL Modeling with ES 15

(a) Predicted vs. actual grades (b) Residual histogram

Fig. 9: Grade prediction model (Model G): (a) True vs. predicted grades and (b)
distribution of residuals y − ŷ.

precise grade-level regression. Mean absolute error (MAE) increased to 0.194,
and MSE increased to 0.051. These outcomes reflect a more cautious regressor
that sacrifices precision to avoid overfitting on noisy or imbalanced labels.

Summary of Performance Improvements. Table 3 reports the full set of evalu-
ation metrics for all models. The right-hand ∆ columns indicate gains relative
to the previous baseline. Binary and multi-class classification metrics indicate
consistent gains, especially in terms of macro-averaged F1-scores and precision
across minority labels. The grade regression task shows mixed results, with gains
in variance capture but a degradation in R2, underscoring the challenge of mod-
eling numerical grades with limited supervision. Overall, the combination of
architectural search and objective-specific tuning yields robust classification im-
provements with moderate trade-offs in regression fidelity.

5 Conclusion

We presented a principled framework for optimizing deep neural network archi-
tectures using evolutionary strategies for the task of automated SQL grading.
The approach integrated architectural and training hyperparameters into a uni-
fied search space, guided by a (µ/ρ + λ)-ES algorithm initialized through grid-
based sampling. This method enabled efficient navigation of high-dimensional
parameter combinations, yielding robust multi-task models.

Performance gains were most pronounced in the classification of correctness
and feedback remarks. Correctness classification achieved a balanced accuracy
of 85%, with consistent improvements in F1-score for both the Correct and
Incorrect classes. For the remark classification task, macro-level performance
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Table 3: Classification and Regression Performance Analysis

Class Evaluation Metrics
Evaluated Prec. ∆ Recall ∆ F1-score ∆ Support ∆

Incorrect 0.88 −0.03 0.77 +0.08 0.82 +0.03 2276 −
Correct 0.85 +0.04 0.93 −0.04 0.89 +0.01 3122 −

Accuracy 0.86 +0.02 5398 −
Balanced Accuracy 0.85 +0.02 5398 −

Cheating 0 +0.75 0 +1.00 0 +0.86 6 –
Correct 0.79 +0.10 0.97 −0.07 0.87 +0.03 3122 −
Non Interpretable 0 +0.90 0 +0.83 0 +0.86 69 −
Partially Correct 0.91 −0.05 0.64 +0.20 0.65 +0.20 2201 −

Accuracy 0.82 +0.06 5398 −
Balanced Accuracy 0.41 +0.46 5398 −

Regression R2 ∆ EV ∆ MAE ∆ MSE ∆

ŷ = Grade 0.427 −0.442 0.429 +0.043 0.113 +0.081 0.029 +0.022

saw a significant rise in balanced accuracy, from 0.41 to 0.87, supported by
large F1-score gains in underrepresented classes such as Non Interpretable
and Cheating. These results suggest that the model architecture learned more
discriminative representations under sparse supervision and noisy inputs.

The grade regression task showed mixed results. While explained variance
improved slightly, the R2 value declined, indicating poorer alignment with fine-
grained grade targets. Nevertheless, the model maintained low error metrics,
with a mean absolute error (MAE) of 0.113 and a mean squared error (MSE) of
0.029, suggesting its utility in producing coarse but reliable grade predictions.

Overall, the experimental evidence supports the use of evolutionary strategies
as a viable mechanism for model discovery in supervised learning contexts char-
acterized by heterogeneous outputs and label sparsity. Future work will explore
extensions to multitask learning and reinforcement-based feedback integration,
with the aim of developing more adaptive assessment systems that align with
real-world educational constraints.
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