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Abstract

This work proposes a methodology to derive
latent representations for highly noisy text. Tra-
ditionally in Natural Language Processing sys-
tems, methods rely on words as the core com-
ponents of a text. Unlike those, we propose a
character-based approach to be robust against
our target texts’ high syntactical noise. We pro-
pose pre-training a Transformer model (BERT)
on different, general-purpose language tasks
and using the pre-trained model to obtain a
representation for an input text. Weights are
transferred from one task in the pipeline to the
other. Instead of tokenizing the text on a word
or sub-word basis, we propose considering the
text’s characters as tokens. The ultimate goal is
that the representations produced prove useful
for other downstream tasks on the data, such as
criminal activity in marketplace platforms.

1 Introduction

Much work has been devoted to deriving sentence
distributed representations (Conneau et al., 2017;
Cer et al., 2018; Li et al., 2020). However, all
of these approaches suffer from limitations. In
the informal contexts we are attempting to deal
with, written language tends to be altered to ful-
fill the writer’s need to convey emotions and per-
sonality. Also, these contexts are prone to mis-
spelling, and new words and acronyms appear all
the time. Usually, non-Latin characters and emojis
are used. Word-based natural language processing
could hardly cope with these circumstances, as the
models are restricted to a finite vocabulary, and
handling the variety of scenarios that can appear
becomes impractical. These limitations have been
highlighted (Tay et al., 2021; Clark et al., 2021;
Xue et al., 2021; Sun et al., 2020), for instance,
in the context of Language Modeling (Jozefow-
icz et al., 2016; Kim et al., 2016; Ma et al., 2020;
Boukkouri et al., 2020) and Neural Machine Trans-
lation (Luong and Manning, 2016), and several

alternatives have been proposed. Using models
that rely on character information is a core idea
behind these proposals.

Another fundamental limitation to obtaining
good vector representations for texts is the lack
of labeled data. Sentence encoders, for instance,
usually rely at least partially on supervised goals to
be trained (Cer et al., 2018; Conneau et al., 2017).
But generally, the amount of labeled data for the
specific purpose is limited and insufficient to op-
timize such architectures properly. That is why it
has become increasingly crucial to pre-train mod-
els on general-purpose tasks, either unsupervised
or where a lot of labeled data is available (Brown
et al., 2020; Devlin et al., 2018), and then fine-tune
the weights on a specific downstream task. As an
alternative, Zhang et al. use a purely unsupervised
method.

The main contribution of this paper is a method-
ology to derive distributed representations of noisy
text using BERT (Devlin et al., 2018). Today, we
count with limited (and unlabeled) data. Thus we
limit the scope of the current research to propose
two unsupervised goals and an artificial supervised
task to obtain a pre-trained BERT model. This
could help derive vector representation of the input
text that will be used in future classification tasks
such as criminal activity recognition.

The rest of the document is organized as fol-
lows. Section 2 describe the pre-training tasks we
propose. Next, Section 3 shows some preliminary
results from training this architecture in a reduced
scope, and Section 4 describes the path we envision
to further developing and testing our proposal. Fi-
nally, 5 offers the conclusions of this partial work.

2 Methods

To compensate for the problems that arise when us-
ing a word-based approach, we propose to tokenize
the text on a character basis. The first advantage
is that this results in a much smaller vocabulary.



The second advantage is that taking a character-
based input may make the representations much
more robust to several phenomena that may appear
in everyday contexts (Boukkouri et al., 2020; Ma
et al., 2020): intentional syntactical variations, ne-
ologisms, use of characters in different alphabets,
and spelling errors.

We propose pre-training a BERT model with sev-
eral unsupervised tasks. The same BERT model is
used in each pre-training task, and a head is added
after it to perform the corresponding task. The only
change to the original architecture is using the posi-
tional embeddings defined by (Vaswani et al., 2017)
to scale to larger sequences without adding more
parameters to the model. The best parameters of
BERT during a phase (according to validation) are
used as initial parameters for the next phase. Af-
ter pre-training, the hidden state of the last BERT
layer corresponding to the [CLS] token of the in-
put text is chosen as its distributed representation.
We call it the text embedding. Figure 1 depicts the
pipeline and models. The three tasks considered
are described in more detail below.
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Figure 1: The pre-train pipeline consists of the three
steps that can be visualized from bottom up. The
weights of the BERT model that achieved better results
in the validation set are transferred to the next step.

First, the BERT model is pre-trained in the
Masked Language Modeling (MLM) task proposed
in (Devlin et al., 2018). Here, some tokens (char-
acters) in the input are masked, and the model
is trained to predict the correct character in the
masked positions. The same strategy used in De-
vlin et al. is used to mask tokens.

The second is a Sequence Classification (SC)
task that takes the text embedding produced by the
BERT model to classify the input text. To solve this
task, we added a head consisting of a Fully Con-
nected layer that maps the text embedding to the
number of classes. We propose to use the following
classes. CORRECT: actual text samples from the
source data; ALTERED: text with some fraction
of the characters randomly replaced; MIXED: text
that has been combined with another piece(s) of
text; and CROPPED text that has been cropped.
The intuition behind the artificial classes is that
the model learns to recognize text that has been
corrupted. Note how examples of these classes
can be constructed without supervision. The COR-
RECT class spans 50% of the training examples,
and the other three classes are sampled with equal
probability (~16.7%).

Finally, the model is trained in a Conditional
Language Modeling (CLM) task, where the con-
text in which the model conditions the output is the
text embedding. Other transformer models have
chosen Language Modeling as an unsupervised pre-
training task (Radford et al., 2018). For Language
Modeling, we use an LSTM-based (Hochreiter and
Schmidhuber, 1997) decoder head. To condition
the output on the text embedding, each token em-
bedding in the input text is added to the text em-
bedding, and Layer Normalization (Ba et al., 2016)
is applied to the result.

3 Experiments

The dataset used was extracted from publicly avail-
able Consumer-to-Consumer marketplaces. It con-
tains 2775 different characters. Text samples were
cropped and padded to a length of 1024.

We ran an experiment with a small setup to ob-
serve the ability of the model to learn the proposed
tasks. The size of the BERT model was reduced
to 6 hidden layers, 6 attention heads, 500 as in-
termediate size, and 300 as final embedding size.
The Conditional Language Model used 3 stacked
LSTMs with hidden size 200 and output size 100
before passing through the final Fully Connected



classifier with Softmax that predicts a character in
the vocabulary. The three tasks were trained using
Categorical Cross-Entropy loss.

Figure 2 shows the error (loss) curves in training
and validation sets as a function of the training
steps of the pre-train process.
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Figure 2: Train and validation error curves as a function
of training steps for the three pipelined pre-train tasks.
(a) Masked Language Modeling. (b) Sequence Classifi-
cation. (¢) Conditional Language Modeling.

We can observe the training error decrease as
more training steps are conducted. In the case of
the MLM task, the model seems to tolerate more
training. The SC task clearly starts overfitting after
a few training steps. Finally, the CLM task training
exhibits convergence.

Figure 3 shows a dimensionality reduction plot
of the text embeddings for the entire dataset. The
method used for dimensionality reduction was
UMAP, and the colors represent the classes of the
SC task.

Here we observe how the model can distin-
guish the class that has been added random noise,
whereas the other three classes appear interleaved.
We consider two possible explanations. First,
the three classes CORRECT, CROPPED, and
MIXED have many samples cropped !, and the

'Either because they are longer than 1024 characters or

Figure 3: Text embeddings reduced to two dimensions
and colored according the classification label in the
Sequence Classification task.

representations may be reflecting this common pat-
tern. Second, because the changes in these classes
affect only the structure of the text, it may be the
case that the model is sensitive to the character’s
distribution but not to the cohesion and complete-
ness of pieces of text.

4 Future Work

Several paths may be further explored. First, it is
paramount to evaluate our pre-trained model on
other relevant downstream tasks and compare the
performance of standard word or sub-word-based
pre-trained language models with ours. Second,
it remains for future work to explore alternatives
to the models used, like using a text embedding
architecture different from BERT, or trying a better
Conditional Language Modeling architecture, like
adapting the more recent TransformerXL (Dai et al.,
2019) to our use case.

5 Conclusions

This work proposed a pipeline to pre-train a BERT-
based feature extractor for noisy texts that rely on
character representations rather than words or sub-
words. Some preliminary results were presented,
but there is still plenty to work on. We expect that
the resulting representations capture features of the
texts that are useful for other downstream tasks in
which we will be able to compare our proposal with
word and sub-word-based approaches. Mainly, we
will be focusing on detecting criminal activity on
the Craiglist website based partly on processing the
posts’ text content.

naturally from the CROPPED class
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