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Abstract. As the need for large-scale data processing grows, distributed
programming frameworks like PySpark have become increasingly popu-
lar. However, the task of converting traditional, sequential code to dis-
tributed code remains a significant hurdle, often requiring specialized
knowledge and substantial time investment. While existing tools have
made strides in automating this conversion, they often fall short in terms
of speed, flexibility, and overall applicability. In this paper, we introduce
ROOP, a groundbreaking tool designed to address these challenges. Uti-
lizing a BERT-based Natural Language Processing (NLP) model, ROOP
automates the translation of Python code to its PySpark equivalent, of-
fering a streamlined solution for leveraging distributed computing re-
sources. We evaluated ROOP using a diverse set of 14 Python programs
comprising 26 loop fragments. Our results are promising: ROOP achieved
a near-perfect translation accuracy rate, successfully converting 25 out of
the 26 loop fragments. Notably, for simpler operations, ROOP demon-
strated remarkable efficiency, completing translations in as little as 44
seconds. Moreover, ROOP incorporates a built-in testing mechanism to
ensure the functional equivalence of the original and translated code,
adding an extra layer of reliability. This research opens up new avenues
for automating the transition from sequential to distributed program-
ming, making the process more accessible and efficient for developers.

Keywords: Program Synthesis · BERT · NLP · Distributed Computing
· BigData

1 Introduction

In recent years, distributed programming has gained significant traction, driven
by advancements in tools that facilitate large-scale data cluster computations
and the growing necessity for analyzing extensive datasets. However, the level
of parallelism that can be achieved is often constrained by the limited range of
operations supported by existing parallel programming languages. Popular Data
Intensive Scalable Computing (DISC) frameworks such as MapReduce [8], Flink
[16], Spark [25], and PySpark [17] simplify these complex details and provide
highly efficient implementations. However, because each framework’s underly-
ing architecture is unique, application development on these systems may take
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much longer and require more labor than building sequential applications in lan-
guages such as Java or Python. As a consequence, productivity would be greatly
increased by automatically turning a sequential program into a distributed pro-
gram in a suitable framework.

Our previous work, Tyro [19] and its successor Tyro v2 [22] were able to trans-
form different sequential Python programs into semantically equivalent PySpark
applications. Tyro converts sequential code pieces to their corresponding dis-
tributed operations by utilizing an Abstract Syntax Tree (AST), static program
analysis, Gradual Program Synthesis (GRASSP) [9], and unit testing [13]. Tyro
v2 leverages a graph-based loop extraction method to capture additional sequen-
tial processes, enhancing component extraction where each component is a piece
of code. Tyro’s intuitive approach begins by searching for the simplest opera-
tion that might be equivalent to a specific code fragment and then gradually
enhances operations used in the synthesis process. Tyro divides the search space
into pieces and begins with a tiny domain of distributed operations rather than
considering a vast solution space at one time. Although utilizing the GRASSP
method reduces the search space for each iteration, it still has to enumerate a
large space. As such, Tyro uses a hand-crafted algorithm to improve the search
process. This algorithm is a bottleneck in terms of generalizing Tyro to handle
larger and more complex programs.

However, neural models provide an alternative for program synthesis that
does not require a human-crafted search strategy [1,12,15]. New neural synthe-
sis systems for program synthesis have emerged in recent years, many of which
employ similar concepts such as neural machine translations [6]. Notably, large
language models like GPT [5] and Codex [7] have demonstrated the potential
of using NLP for tasks closely related to code translation and synthesis. These
developments suggest that NLP techniques could offer a more scalable and gen-
eralizable solution for automating the transition from sequential to distributed
code.

In this context, we present ROOP, a novel tool that leverages a NLP-based
Bidirectional Encoder Representations from Transformers (BERT) model for
code translation. ROOP takes a sequential Python program that operates itera-
tively on a dataset, along with accompanying test cases as input. It first identifies
“Loop Fragments” (a term we introduce to describe iterative statements or code
snippets) within the code. These Loop Fragments are then processed by our
BERT model, which predicts their corresponding PySpark API calls. Following
this, the predicted API calls are refactored according to a predefined set of rules
and structures. The refactored code is then subjected to the provided test cases,
serving as a program equivalence verifier. Once the verifier successfully passes
these test cases, ROOP generates a complete, executable PySpark program. This
approach not only enables a more accurate translation but also incorporates unit
testing as a crucial step for ensuring code equivalence, thereby aligning closely
with the true purpose of code generation. Our key contributions are:
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– We propose ROOP, a tool that uses a BERT-based NLP model, innova-
tively synthesizing distributed PySpark code from a given Python code and
validation processes to ensure both accuracy and functional equivalence.

– We evaluate ROOP’s performance across a diverse range of Python pro-
grams, showing high translation accuracy and quick translation.

The rest of this paper covers several key areas. First, we look at existing
research to set the stage for our own work. Next, we go into the technical details
of our tool, ROOP, and how it operates. We also share the results of tests we’ve
run to show that our approach works well. Finally, we discuss what these results
mean and what could be explored in future research, wrapping up a summary
of what we’ve achieved in making it easier to convert Python code into PySpark
applications.

2 Related Work

The realm of program synthesis, notably the transition from sequential to dis-
tributed programming, has been an active area of research over the past few
years [2,20,18,10]. The complexities inherent in translating code structures, com-
bined with the need to maintain the semantics of the original code, present
unique challenges that have spurred numerous methodologies and tools. This
section provides an overview of prior research in this domain, setting the con-
text for our NLP-driven approach

2.1 Sequential to Distributed Translation

The shift from sequential to distributed programming paradigms is driven by
the increasing demands of big data processing. While sequential programs are
typically easier to write and debug, they often lack the scalability required for
large-scale data processing tasks. Distributed frameworks, on the other hand,
provide scalability but introduce complexities in terms of data partitioning, task
distribution, and fault tolerance.

Several tools and methodologies have been proposed to assist developers in
this transition. For instance, Casper [2] stands out as a significant contributor.
Casper uses search algorithms to convert sequential Java code into the MapRe-
duce framework. Casper employs program synthesis to generate program sum-
maries, which are then verified for semantic accuracy using a theorem prover.
While effective, its search-based methodology has limitations in handling a broad
range of coding complexities.

On a similar note, Mold [18] offers an alternative approach, targeting the
Apache Spark runtime. Mold converts input code into a functional form, guided
by rewrite rules to find an optimal MapReduce implementation. It introduces
a unique technique for handling irregular loop dependencies, enhancing paral-
lelism. In evaluations, Mold has proven effective even for codes with complex
updates.
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Following the same, the authors in [10] introduce a novel framework DIABLO
designed to translate programs expressed as array-based loops into distributed
data-parallel programs. Targeting scientists who are well-versed in numerical
analysis but less familiar with Big Data analytics, this framework aims to sim-
plify the transition from loop-based to data-parallel programming. Built on top
of Spark, the prototype has demonstrated both greater generality and efficiency
compared to existing solutions, even when benchmarked against hand-written
programs.

Unlike Casper and Mold, which focus on MapReduce, our tool ROOP extends
its reach to include more operations in PySpark. While DIABLO also uses Spark,
it’s not as flexible as ROOP. Our tool uses data-driven synthesis, making it easier
to adapt to different frameworks and various distributed operations. This makes
ROOP a more flexible and robust solution for automating the translation of data-
intensive applications, catering to a wider array of programming paradigms and
data processing requirements

2.2 NLP in Code Translation

The application of NLP to code-related tasks has opened up a plethora of re-
search avenues, each marked by innovative techniques and promising results.
One such significant venture is semantic parsing, which aims to convert natural
language queries into executable code snippets. Youssef et al. spearheaded ef-
forts in this domain, leveraging Artificial Neural Networks (ANN) [14] and Long
Short-Term Memory (LSTM) [11] based Recurrent Neural Networks (RNN) [3]
to generate Python code from natural language descriptions [24].

Complementing this, the realm of binary code analysis has also benefited
from NLP methodologies. Zuo et al. adapted techniques originally developed
for NLP to perform large-scale binary code similarity assessments. Their work
serves as a cornerstone for exploring further research in code translation and
similarity evaluation [26]. Structured prediction, a concept deeply rooted in
NLP, has found relevance in code generation as well. Wang et al. introduced
CODE4STRUCT [23], a specialized model trained on a hybrid dataset of text
and code. This model employs text-to-structure translation mechanisms to ac-
complish structured prediction tasks, thereby creating a symbiotic relationship
between natural language and code structures.

In conclusion, the achievements made in semantic parsing, binary code analy-
sis, structured prediction, and transfer learning, along with the high performance
exhibited by large language models, underline the feasibility and value of pur-
suing data-driven or NLP-guided synthesis for complex tasks such as sequential
to distributed code translation.

3 System Architecture

The ROOP architecture methodically addresses the task of translating sequential
code into a distributed application. As depicted in Fig. 1, the system follows a
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Fig. 1: System Architecture of ROOP: A modular approach in translating se-
quential Python code into distributed PySpark applications.

modular approach at its core, where each module focuses on a specific aspect
of the translation process. From initial code parsing of the Python file to the
final output, the system aims to maintain the semantics of the original code
while ensuring it aligns with distributed programming principles. We explain
the system’s architecture components in the following sections.

The algorithm, as shown in Algorithm 1, serves as the backbone for translat-
ing a sequential Python program P into its distributed form P ′. It initiates by
parsing P using its Abstract Syntax Tree (AST) to extract relevant structures
such as loops, operations, and variables. These structures are then subjected to
prediction through an NLP model M , thereby producing a set of refactorings,
termed as candidates.

For each candidate in candidates, the algorithm iteratively proceeds to refac-
tor each extracted structure. The refactored structure is tested using the “pytest”
framework with the user-provided test program T . If all tests pass successfully,
the refactored structure is integrated into P ′. Conversely, the algorithm moves
to the next candidate.

The algorithm concludes by either outputting P ′ as the final distributed
code, provided all structures have been successfully refactored, or by raising a
“No Translation Found” exception.

3.1 Code Extraction

Our code extraction module employs a deep traversal of Python’s AST to identify
and isolate significant code constructs. During this traversal, the module looks
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Algorithm 1 Sequential to Distributed Code Translation
Input: Sequential Program P , Test Program T
Output: Distributed Program P ′

Parameters: NLP Model M
Parse P using AST to extract structures
Identify and extract loops, operations, and variables
candidates←M.predict(structures)
for each candidate in candidates do

for each structure in structures do
Refactor structure based on candidate
Test refactored structure using ‘pytest‘ with T
if All tests are passes then

Integrate refactored structure into P ′

else
Continue to the next candidate

end if
end for

end for
if All structures successfully refactored then

return P ′ as final distributed program
else

Raise No Translation Found
end if

for loop nodes (for or while) and operational nodes (e.g., conditional statements,
function calls, and method calls). Special attention is given to nested loops, where
each inner loop is also captured as a distinct “Loop” data structure and linked
to its parent loop for hierarchical representation.

The “Loop” data structure incorporates a variety of attributes, such as a
unique identifier, start and end lines, and an associative list of input and output
datasets. This allows for a complete understanding of the loop’s role within the
code. Similarly, every operation—be it a simple arithmetic operation, a condi-
tional check, or a dataset manipulation—is encapsulated within an “Operation”
data structure. This structure stores pertinent details like the involved variables,
the line number, and the operation type.

To ensure exhaustive extraction, the AST nodes are traversed recursively,
enabling the identification of operations even within nested conditions and loops.
Each “Loop” and “Operation” data structure is then populated dynamically as
the AST is traversed, thereby constructing an organized and detailed snapshot
of the code’s logic and functionality.

Table 1 provides a concrete example of how our code extraction module
operates on a Python function designed to filter even numbers from a list. It
showcases the original Python code alongside the loop information extracted and
formatted in a structured JSON-like representation. This extracted information
highlights key attributes such as the loop’s unique identifier, start, and end lines,
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Table 1: Loop information extracted from a Python function represented in
JSON-like format.
Code Snippet Extracted Loop Information

def even_filter(numbers):
evens = []
for num in numbers:

if num % 2 == 0:
evens.append(num)

return evens

{
"Loop ID": 1,
"Start Line": 3,
"End Line": 6,
"Is Nested": "No",
"Datasets": {
"Input": "numbers",
"Output": "evens"
},
"Operations": [
{

"Type": "Conditional",
"Expression": "num % 2 == 0"

},
{
"Type": "Method Call",
"Expression": "evens.append(num)"
}]}

involved datasets, and operations—attributes that are dynamically populated by
traversing the AST.

3.2 Fined-tuned BERT Model

A key component of the ROOP system is its Fine-Tuned BERT model for code
translation. The model architecture is derived from the pre-trained BERT-base
model and is specialized for our translation task. The BERT Classifier class
serves as the backbone for our translation model, incorporating both the BERT
tokenizer and the TensorFlow-based sequence classification model. The classifier
is initialized with a pre-trained model stored locally, and it is fine-tuned to
classify 111 different labels which correspond to the PySpark API calls [21].

To handle the sequence inputs, we employed BERT’s tokenizer with a maxi-
mum sequence length of 256. The input code snippets are tokenized and fed into
the model, which then returns a set of logits. These logits are transformed into
probabilities using a softmax layer. The model predicts the top 5 candidates or
PySpark API calls that are most likely to correspond to the input code snip-
pet. The top predicted labels are inverse-transformed to get their corresponding
PySpark API calls. Additionally, the class includes methods for making single
predictions, offering flexibility based on the task at hand. This fine-tuned BERT
model serves as a powerful mechanism for highly accurate code translation, con-
tributing to the overall robustness and efficiency of the ROOP system.
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Table 2: Top 5 distributed operations predictions by the fine-tuned BERT model.
Original Loop Code Top 5 Predicted Distributed Operations

for num in numbers :
i f num % 2 == 0 :

evens . append (num)

‘ f latMap ( ) , count ( ) ’ ,
‘ take ( ) ’ ,
‘ sortBy ( ) ’ ,
‘map( ) , d i s t i n c t ( ) ’ ,
‘ f i l t e r ( ) ’

for str in s t r i n g s :
lower = str . lower ( )
r e s u l t += lower

‘ f i l t e r ( ) ,sum( ) ’ ,
‘ reduce ( ) , c o l l e c t ( ) ’ ,
‘sum( ) ’ ,
‘map( ) , reduce ( ) ’ ,
‘ reduce ( ) ’

Table 2 provides an illustrative example of how the fine-tuned BERT model
performs in predicting distributed operations for given Python loop code. The
table shows three different Python loops alongside the top 5 PySpark API calls
predicted by the model. For instance, the loop that filters even numbers from a
list has candidates like ’flatMap(),count()’, ’filter()’, and ’sortBy()’, among oth-
ers. These predicted candidates demonstrate the model’s capability to suggest a
variety of PySpark methods that could be used to achieve the same functionality
as the original Python code but in a distributed environment.

Similarly, for a loop that converts strings to lowercase and accumulates them,
the model predicts operations like ’filter(),sum()’ and ’reduce(),collect()’, re-
vealing its understanding of both data filtering and aggregation tasks in a dis-
tributed setting. Another loop, which flattens a list of lists, has predictions like
’flatMap(),distinct(),count()’ and ’flatMap(),sum()’, suggesting that the model
can identify complex nested operations that can be parallelized.

3.3 Refactor

The Refactor module operates together with the Code Extraction module, form-
ing a cohesive solution for transforming Python code into PySpark snippets. This
module accommodates a wide array of data manipulation operations, including
but not limited to map, filter, reduce, join, union, sort, groupBy, flatMap, sum,
and count.

Each data manipulation operation, be it map, filter, reduce, or join, has a
method within the Refactor module to handle its specific requirements. For
example, the map_operation method corresponds to the map function and takes
parameters such as the source dataset, the details of the operation to be executed,
and the resulting dataset.

Additionally, each PySpark API call is associated with a specialized method
tailored to its parameter requirements. For example, operations involving mul-
tiple datasets, such as join or union, accept additional parameters to specify
the secondary datasets. This adaptability ensures that the module can handle a



NLP-Guided Synthesis 9

variety of data manipulation tasks. On the other hand, simpler methods like sum
and count do not require any extra parameters, making them straightforward to
use. Overall, this detailed approach allows the Refactor module to offer a rich
set of functionalities through distinct methods.

Diving into the specifics of how individual loop fragments are transformed
into PySpark code snippets, the refactor module relies on the information ex-
tracted by the Code Extraction module. This includes details like the list of
datasets, the operations performed within the loop, and any conditions as shown
in Table 1. Once the BERT model provides its predictions as candidates, the
Refactor module gets to work, iteratively applying the refactoring functions for
each API call suggested by the model.

For instance, consider an operation like lower = str.lower(). It is first wrapped
into a lambda function as lambda lower: str.lower(). This lambda function is
then wrapped by the map method, as predicted by the BERT model, resulting
in map(lambda lower: str.lower()).

Similarly, for filter operations that primarily work on conditions, a condition
like num % 2 == 0 would be encapsulated within a lambda function as lambda
num: num % 2 == 0. This is then further wrapped by the filter method to form
filter(lambda num: num % 2 == 0).

Importantly, each method accepts two key parameters: the primary dataset
and the result dataset or variable. The refactored code is first concatenated
with its primary dataset and then assigned to the result dataset. For exam-
ple, the refactored code map(lambda lower: str.lower()) would concatenate with
its primary dataset, strings_rdd, and then be assigned to the result dataset
strings_rdd to form strings_rdd = strings_rdd.map(lambda lower: str.lower()).
This approach is systematically applied to each prediction, transforming them
efficiently and coherently into PySpark API calls. Similarly for the filter oper-
ations, it does the same and returns evens = numbers_rdd.filter(lambda num:
num % 2 == 0)

The Table 3 serves as an illustration of the refactoring module’s capabilities.
On the left, we have a conventional loop in Python and on the right, the refac-
tored code accomplishes the same task but uses the distributed PySpark API
calls.

Table 3: Example illustrating the transformation of original loop code into refac-
tored code.
Original Loop Code Refactored Code

for num in numbers:
if num % 2 == 0:

evens.append(num)

evens = numbers_rdd
. f i l t e r (

lambda num: num % 2 == 0
)

for sublist in list_of_lists:
for item in sublist:

result.append(item)

l i s t_o f_ l i s t s_rdd
. flatMap ( lambda x : x )
. c o l l e c t ( )



10 A. Sanjel et al.

3.4 Verifier

In ROOP’s pipeline, verifying the correctness of the generated PySpark code is
a crucial step. While the theoretical problem of program equivalence is unde-
cidable [4], ROOP utilizes a practical approach through unit testing to confirm
that the refactored code is equivalent to the original Python code.

The Verifier module, central to this step, incorporates several methods that
together assure code equivalence. Initially, the user needs to provide unit tests
for the original Python code, which serves as the ground truth. ROOP assumes
that the original code passes all these tests.

With the assistance of the Python package pytest and a specialized version
customized for Spark, known as pytest-spark, the run_pytest_isolated method
executes these unit tests on the generated PySpark code without requiring any al-
terations. The module encapsulates SparkContext within each function, thereby
eliminating the issue of multiple connections. Additionally, ROOP sidesteps the
need to import any libraries during the testing phase. This is possible because
pytest can be invoked via Python’s subprocess module, which also captures stan-
dard output and error streams for further analysis.

To check for successful verification, the method parse_test_xml reads the
pytest output logged in XML format. Any failing test case along with its failure
message is collected for debugging purposes. If all tests pass and the standard
error stream is empty, the generated code is considered verified as it passes all
the unit tests and is equivalent to the original Python code.

This verification process is looped through for each generated prediction.
The code is first written to a temporary Python file which is generated with the
help of the Code Generation module (described in Section 3.5), after which the
run_pytest_isolated method is invoked to perform the testing. If all tests pass,
the prediction is correct, and the loop breaks, confirming that the refactored
code performs identically to the original code.

This comprehensive approach ensures that the final program, including the
refactored code, is fully functional and ready for execution.

3.5 Code Generator

Upon invocation, the function initiates the PySpark environment by generating
a function, get_or_create_spark_context, which ensures that a Spark context
is either retrieved or created. This function sets the application name and runs
the Spark master locally. This initialization ensures that each function within
the code has a unique Spark context.

The previous module Code Extraction has already stored loop information
for us. It has already mapped a loop with its starting line number and end line
number. The Code Generator iterates through each line of the original code to
find the corresponding loops. Upon finding a loop, it adds the PySpark initial-
ization code along with spark context and then replaces the original loop with
the refactored PySpark code given by the Verifier module after successful vali-
dation. The function pays special attention to the indentation to ensure that the
refactored code aligns correctly with the original Python code.
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Additionally, for each dataset used in the loop, the function parallelizes it
using SparkContext that it initialized earlier, thereby converting it into an Re-
silient Distributed Dataset (RDD). If a loop involves a flatMap operation, the
loop skips parallelization for the remaining datasets to avoid redundancy since
the secondary dataset in flatmap is not required to be parallelized. However, for
APIs like join and union, it parallelizes both primary and secondary datasets.

After inserting the refactored code, the function adds a command to stop the
spark context. This ensures that no unnecessary resources are consumed. This
is done at the end of the loop, which again is extracted by the Code Extraction
module earlier as the end line number.

Finally, the module stitches together all these components, preserving the
original code structure where no changes are needed, and returns the executable
PySpark code.

4 Experimental Setup and Metrics

4.1 Setup

The experiments were conducted in a controlled environment to ensure consistent
and reliable results.

For Fine-tuned BERT Model: An Intel Xeon Gold 6258R CPU running
at 2.00GHz with 6 cores, an NVIDIA Tesla V100 GPU with 15GB of memory,
32GB of DDR4 RAM, and a 256GB NVMe SSD were all used as the hardware
and software setup for training and testing the model. The deep learning li-
brary used was TensorFlow 2.12.0, and the computing environment was Python
3.10.12. Tokenization also made use of the BERT Tokenizer from HuggingFace’s
Transformers library.

For ROOP Synthesis An Intel Core i5 8250U CPU running at 1.80GHz
with 8 cores, 8 GB of DDR4 RAM, and a 256GB NVMe SSD were the main
parts of the hardware setup used for ‘ROOP’. Python 3.11.4 was used for the
development and testing of ROOP. For testing, we used the Python Package
PyTest.

Test Suites: In our experiments, we utilized a diverse array of Python pro-
grams to ensure a comprehensive evaluation. The dataset features 14 distinct
programs, which contain a total of 26 loop or iterative fragments. These frag-
ments range from simple loop constructs to complex nested structures. The pro-
grams are organized into three distinct test suites, each targeting varying levels
of computational complexity:

– Simple Operations: Programs using single or sequentially chained PyS-
park API calls like map, reduce, and filter within a single loop.

– Nested Operations: Programs with nested loops or loops collaborating
across multiple datasets, involving operations such as union, flatmap, and
join.

– Complex Operations: Programs with higher computational complexity,
featuring multiple nested or sequential loops, each encapsulating more than
two PySpark API operations, often chained or interdependent.
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We assessed the performance of our system using these principal metrics,
each of which provides a different perspective on the system’s overall efficacy:

– Translation Accuracy: This metric gauges the system’s ability to correctly
translate Python programs into PySpark. A high translation accuracy en-
sures that the converted programs maintain the original program’s logic and
functionality.

– Synthesis Speed: This metric evaluates the amount of time taken by
ROOP to generate the PySpark translation from a given Python program.
A faster synthesis speed is advantageous for real-time or near-real-time ap-
plications.

5 Results and Discussion

Fig. 2 is an example of ROOP’s capability to convert standard Python functions
into their PySpark equivalents. For instance, the Python function even_filter
uses a traditional for-loop to filter out even numbers from a list. In its PyS-
park counterpart, the function leverages Spark’s Resilient Distributed Datasets
(RDD) and the filter transformation to achieve the same outcome, but in a
distributed computing environment. Similarly, the length_counter function in
Python, which calculates the lengths of given strings, is translated to use PyS-
park’s map transformation. Both translated functions also manage the creation
and termination of a Spark context, showcasing ROOP’s ability to seamlessly
integrate resource management within the translated code.

The get_or_create_spark_context function serves as a centralized manager
for SparkContext, ensuring efficient and safe usage within the application. It
utilizes Spark’s getOrCreate method to either retrieve an existing SparkContext

Fig. 2: Translation of ROOP from Python to executable PySpark
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or create a new one, thereby avoiding the pitfalls of multiple initialization. This
singleton approach simplifies resource management and allows for consistent
configuration across the application.

Through these example functions, Fig. 2 highlights the adaptability and ef-
ficacy of ROOP in enabling distributed computing capabilities by translating
Python logic into PySpark. Such translations are invaluable for tasks that are
data-intensive and require scalability across multiple nodes in a Spark cluster.

5.1 Translation Accuracy

Table 4 summarizes ROOP’s effectiveness in converting Python programs to
their PySpark equivalents. The dataset is divided into three separate test suites
for a more in-depth analysis: Simple Operations, Nested Loops, and Complex
Programs. These suites consist of 14 programs with 26 loop or iterative fragments
in total. Examining the table closely indicates a remarkable translation accuracy
rate. All but one loop segments across all suites could be translated with success
by ROOP.

The incorrect translation that we encountered during our evaluation was the
program that sums up all the even numbers in a given list. The reason for this
failure is the model’s inability to accurately predict the appropriate PySpark
API calls that correspond to the original Python code. Specifically, the model
struggled to recognize that the Python for loop and the conditional if statement
could be translated into a PySpark filter followed by a reduce operation. As part
of our future work, we plan to enhance the model’s capabilities by training it on
a more diverse set of code snippets. This will help us to improve the accuracy
of API call predictions, thereby reducing such failures

To sum it up, the high rate of successful translations across diverse opera-
tional complexities validates the reliability and generalizability of ROOP’s trans-
lation mechanism. While one instance of translation failure was observed, this
doesn’t undermine ROOP’s overall effectiveness; rather, it identifies an avenue
for future improvement. This insight informs our future work, where we plan to
enhance the model by training it on a more diverse set of code snippets, thereby
improving its accuracy and adaptability across different programming scenarios.

Table 4: Translation Accuracy Results
Test Total # of Loop Successful

Suites Programs Fragments Translations
Simple Operations 6 7 6
Nested Operations 5 10 10

Complex Operations 3 9 9
Overall 14 26 25
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Table 5: Execution Time Metrics Across Test Suites
Folder Program Avg Min Max Std
complex_operations flatmap_distinct_count.py 152.16 129.89 248.46 35.71
complex_operations flatmap_filter_sort.py 108.16 86.29 157.71 21.57
complex_operations map_distinct_sort.py 103.61 86.76 116.49 7.41
nested_operations flatmap.py 121.45 98.31 156.3 17.96
nested_operations flatmap_count.py 94.28 76.91 129.76 17.18
nested_operations join.py 147.27 105.00 205.21 32.34
nested_operations union.py 85.61 66.91 111.02 15.39
nested_operations union_count.py 57.45 46.43 75.70 8.95
simple_operations filter_count.py 44.02 35.11 65.10 9.37
simple_operations filter_reduce.py 82.18 70.87 111.95 12.15
simple_operations map_reduce.py 67.64 58.13 85.67 8.06
simple_operations map_sum.py 84.73 72.37 106.78 10.66
simple_operations multiple_loop.py 53.92 41.97 94.36 15.5898
simple_operations reduce.py 53.10 45.37 63.67 7.66

5.2 Synthesis Speed

To assess the efficiency of the ROOP system in translating Python programs
into their PySpark equivalents, we present a comprehensive set of metrics in
Table 5. The programs are categorized into three distinct test suites: Simple
Operations, Nested Operations, and Complex Operations, to provide a more
nuanced understanding of performance. For statistical robustness, each program
was subjected to 10 translation iterations, with metrics like mean, minimum,
maximum, and standard deviation of the execution times calculated.

Upon close examination of Table 5, it becomes evident that program complex-
ity is a significant factor influencing translation time. Specifically, the Complex
Operations suite exhibits longer execution times, peaking at 248.46 seconds for
the program flatmap_distinct_count.py.

Conversely, the Simple Operations suite demonstrates efficiency, with the
filter_count.py program requiring a maximum of only 65.10 seconds for transla-
tion. It is noteworthy that the prediction phase of the BERT model runs within
7 to 10 seconds on average. However, because a new test environment needs to
be set up for each prediction, the verification process adds a significant amount
of time overhead. In conclusion, improving the correctness of the BERT model
to reduce verification occurrences and maybe utilizing distributed computing re-
sources to accelerate the verification process are two possible ways to increase
performance efficiency.

6 Conclusion and Future Work

This work introduces ROOP, an innovative tool that uses a BERT-based NLP
model to swiftly and accurately translate Python programs into PySpark coun-
terparts. Our experimental evaluation, which included 14 different Python pro-
grams and 26 loop pieces, highlights the tool’s robustness and versatility. ROOP
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translated 25 of 26 loop pieces effectively, indicating great accuracy across a
wide variety of complexities. Furthermore, our metrics reveal that for simpler
procedures, ROOP can finish translations in as little as 44 seconds, showcasing
its efficiency.

However, like with any initial work, there are opportunities for improvement
and future research. The translation time for more complex operations, which
can take several minutes, is one drawback. Future work might focus on optimizing
the BERT model and the process of verification to further minimize these times.
One such path could be the implementation of parallel or distributed verification.
Furthermore, while ROOP has great translation accuracy, it did fall short in one
case. Investigating the reasons behind this and tweaking the model accordingly
may help it perform more effectively.

Another exciting direction would be to extend ROOP’s capabilities to other
distributed computing frameworks beyond PySpark. Given the tool’s underlying
architecture, adapting it to other languages or frameworks is a feasible and
intriguing avenue for future research.

In summary, ROOP shows great promise as a tool for simplifying the tran-
sition from traditional to distributed programming. Its high accuracy and speed
can significantly streamline the software development process, making it a valu-
able asset for both researchers and practitioners in the field of distributed com-
puting.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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