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Abstract—Machine learning can thrust technological advances
and benefit different application areas. Further, with the rise of
quantum computing, machine learning algorithms have begun to
be implemented in a quantum environment; this is now referred
to as quantum machine learning. There are several attempts to
implement deep learning in quantum computers. Nevertheless,
they were not entirely successful. Then, a convolutional neural
network (CNN) combined with an additional quanvolutional
layer was discovered and called a quanvolutional neural network
(QNN). A QNN has shown a higher performance over a classical
CNN. As a result, QNNs could achieve better accuracy and loss
values than the classical ones and show their robustness against
adversarial examples generated from their classical versions. This
work aims to evaluate the accuracy, loss values, and adversarial
robustness of QNNs compared to CNNs.

Index Terms—quanvolutional neural networks, quantum neu-
ral networks, convolutional neural networks

I. INTRODUCTION

Today, areas such as computer visions, natural language
processing and autonomous cars have significant improvements
thanks to the rise of deep learning (DL). However, DL
performance is still unsatisfying in some applications, and
some works explored its accuracy. Further, some examples
show the DL vulnerabilities in adversarial examples [1], [2].
Thus, we aim to address those problems of deep learning.

After the rise of quantum computing (QC), Schuld et al.
[3] implemented machine learning algorithms in QC context
and introduced the new area, a.k.a. quantum machine learning.
There are several existing works attempting to create deep
learning models in quantum computing [4]-[7]. In particular,
Henderson e al. 8] designed hybrid neural networks composed
of a quanvolutional layer and classical layers and called them
quanvolutional neural networks (and related contributions can
be found in [9)]).

Inspired by the idea in [8], we desire to evaluate if a
QNN is more accurate and more adversarially robust than
classical-CNN. Therefore, the contributions of this report can
be summarized as follows:

o We discuss the idea of QNN and show our QNN layout
focused on describing a quanvolutional layer.
o We extensively construct experiments to evaluate the
performance and robustness of QNNs.
This paper is organized as follows: Section [II| provides a
review of convolutional neural networks, adversarial examples
and works related to our work; Section explains how

we designed our quanvolutional neural network and how it
functioned; Section describes how we constructed our
experiments; Section |[V| shows the results obtained from our
experiments; finally, Section discusses the experimental
results and concludes everything.

II. BACKGROUND

This section explains the preliminary knowledge needed
for the other sections. First, we provide a background of
convolutional neural networks and then discuss the literature of
adversarial examples. At last, we briefly describe some works
that are relevant to ours.

A. Convolutional neural networks

In general, convolutional neural networks (CNN) are com-
posed of convolutional and dense layers. In particular, a
convolutional layer performs a convolution operation on its
input; therefore, it can extract a feature indicating spatial
correlation among its input’s attributes. Furthermore, each layer
can have multiple filters to extract multiple features, and the
filters have the same kernel sizes and strides. In addition, a
filter can be 1-dimension, 2-dimension or d-dimension where
d > 1 and d € Z. For example, if an input is a 2-dimension
image, a filter is usually 2-dimension to extract a feature for
spatial correlation among the image’s pixels. Figure |1| shows
an example of CNN where its components are listed as follows:
the first layer is a convolutional layer with 8 filters and 64-
by-64 kernel size; the second layer is a convolutional layer
with 24 filters and 48-by-48 kernel size; the third layer is a
convolutional layer with 24 filters and 16-by-16 kernel size;
the fourth layer is a dense layer with 256 neurons; the last
layer is a dense layer with 128 neurons. In the present, the
examples of famous CNNs for images that are widely used
are VGG [10], ResNet [11]], Inception [12] and Xception [13].

B. Adversarial examples

Adversarial examples are samples that can mislead a target
classifier to output predictions that contrast with humans’
perceptions. These examples were initially discovered in [ 1]] and
then were further analyzed why they could mislead classifiers
in [2]. Moreover, they invented a one-step attack called Fast
Gradient Sign Method (FGSM) and adversarial training to
defend against the attack. Later, Kurakin et al. [14] modified
FGSM to be iterative to create a more potent attack. In addition,
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Fig. 1: An example of convolutional neural network that consists of three convolutional layers and two dense layers.

Papernot et al. [[15]] developed an attack altering only a few
pixels of an image to create an adversarial example and called
it Jacobian-based Saliency Map Attack (JSMA). Essentially,
Kurakin et al. [16] showed that adversarial examples could
be effective in the real world even though a camera could
reduce small perturbation; thus, adversarial examples were
hazardous in practice. Then, Carlini and Wagner [17] created
the strongest adversarial attack by formulating an unconstrained
optimization problem and using a gradient approach to solve
it. More interestingly, Su et al. [[18] constructed an adversarial
example that perturbed only one pixel by using an evolutionary
algorithm.

In our experiments, we utilized the attack from [17] to
evaluate learning models in terms of adversarial robustness
and called it Carlini and Wagner attack (CWA).

C. Related works

Several works have attempted to develop machine learning
models in the quantum computing environment. Further, some
tried to combine a quantum machine learning model and
a classical one. Also, some works studies on adversarial
robustness of quantum machine learning. Therefore, it is helpful
to describe some of those works as the following briefly.

1) Quantum neural networks: Farhi et al. [4]] introduced
a quantum neural network consisting of a series of unitary
operators, and its measurement is a Pauli operator. They applied
this network to create a MNIST classifier. However, since they
used a classical simulator, their networks could not handle a
massive input, e.g., a MNIST input. Thus, they downsampled
MNIST images from 28-by-28 images to 4-by-4 images and
selected only the data with labels 3 and 6 because their network
was simply a binary classifier. Then, Cong et al. [6] proposed
quantum convolutional neural networks and used them for
quantum phase recognition and quantum error correction. Later,
Kamruzzaman et al. [|19] explained quantum deep learning
neural networks and described their advantages over classical
deep learning neural networks. Oh ef al. [7]] also created a
quantum convolutional neural network by imitating the structure
of classical ones. Then, they trained it for classifying images
in a downscaled MNIST dataset. As a result, the network

could achieve the same accuracy and loss value as its classical
counterpart.

2) Quanvolutional neural networks: A QNN is a hybrid
network consisting of a quanvolutional layer and classical
layers, which will be explained later. This kind of network
was proposed in Henderson et al. [8] and was used as a
MNIST classifier. Consequently, the network could achieve a
better accuracy and loss value than its classical counterpart.
However, it is unfair since the QNN had an additional
quanvolutional layer. Hence, QNN had more layers than its
classical counterpart. Later, in 2021, Orduz et al. [9] proposed
a quanvolutional autoencoder and compared it to its classical
counterpart. As a result, the quanvolutional autoencoder could
offer early learning stability in the CIFAR-10 dataset [20].

3) Adversarial robustness: Liu and Wittek [21] recently
discussed the trade-off between security and quantum advantage
because when input was high-dimensional, a quantum classifier
was significantly vulnerable to adversarial examples. Then,
Lu et al. [22] analyzed adversarial robustness on quantum
neural networks and found that they were vulnerable to
adversarial examples generated from gradients of the networks.
Further, they showed that adversarial examples generated
from classical neural networks could be transferred to the
quantum neural networks. Guan et al. [23]] proposed a method
to determine robustness bound and developed robustness
verification algorithms for quantum classifiers.

III. QUANVOLUTIONAL NEURAL NETWORKS (QNN)

These networks were first proposed by [8]] and shown that
they could improve the performance of classical CNN. In
general, a QNN consists of two parts: a quanvolutional layer and
CNN. Specifically, this idea is to add one more quanvolutional
layer as the first layer of CNN, and this layer is simply a
quantum circuit that mimics a convolutional layer. One circuit
in a quanvolutional layer is a filter; hence, if we desire to have
n filters in the layer, we need n circuits. The number of qubits
in each circuit can be determined as

ku - kp, (D
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Fig. 2: A filter of quanvolutional layer with 5 filters where the kernel size is 2-by-2, and the output for each channel is the
average of all the values after the measurements. Note that 12, has 7 multiplied by a value v from the input as its argument.

The “/” means more qubits.

where k,, is the width of the kernel, and kj, is the height of
the kernel. For example, if the size of the kernel is 2-by-2,
then the number of qubits is 4. Further, in a circuit, the initial
states of the qubits are |0), and those states first pass R,, gates
whose phases are = multiplied with the values from the kernel

in the input. That is,
(cos § —sin g)
. 0
Sin 3 COS b

where § = vm, and v is a value from the kernel. Then, all
outputs of 7, gates go to a U operator, a random quantum
circuit consisting of several one-qubit and two-qubit entangling
gates; hence, it can find spatially correlation among attributes
of the input by using two-qubit entangling gates. After that, the
U operator’s results are measured, and the average is the final
output. This method and circuit can be illustrated in Figure [2]
and summarized as follows.

Ry(0) = @

1) We choose small kernels (2 x 2) as inputs with respect
to strides.

2) We apply rotations onto |0), given by R, operators whose
parameters are m multiplied by values from the kernels.
3) We apply U, which is a random quantum circuit. It can
come from different paradigms of quantum computing,
e.g., variational quantum circuit [24] or from universal
gates model [25].

4) We finally measure and obtain the average.

After the quanvolutional layer, we obtain the output with n
channels where n is the number of filters. At last, this output
is fed to CNN. Figure [3| shows the outputs after passing a
quanvolutional layer with five filters, and each filter may focus
on a different part of an image. For instance, according to the
figure, the outputs of the quanvolutional layer for the image of
5 have white areas and dark areas in different places. Therefore,
as being noticed, it is very similar to a convolutional layer. It
simply applies a quantum circuit instead of a convolutional
layer.

IV. EXPERIMENTAL DESIGN

We constructed these experiments on Google Colab [26] and
used Python version 3 mainly with Pennylane module [27] for
implementing quanvolutional layers and Tensorflow module
[28] for implementing machine learning models (i.e., CNNs).

We use MNIST dataset [29] as our input, and this dataset is
images of digits (i.e., zero to nine). Our models need to classify
these images into digits. Fairly, we trained all models for 30
epochs with the same training dataset consisting of 50 images
and tested them with the same 30 images. All the models are
described as follows:

1) Linear model. This model has only the output layer,
which has ten neurons for the outputs of ten digits.

2) Quantum linear model. The first layer of this model is
a quanvolutional layer, and the other part is the linear
model.

3) CNN model. The first layer of this model is a convolu-
tional layer with 3 filters. Each filter’s kernel size and
stride are 3 x 3, and the rest is the linear model.

4) Quantum CNN model. This model is a quanvolutional
neural network whose architecture is the same as the CNN
model with an additional quanvolutional layer in its front.

5) 2-CNN model. This model has two convolutional layers,
and the first one has 5 filters with 3 x 3 kernel size and
1 x 1 stride. The rest of the model is the CNN model.

It is worth noting that our quanvolutional layer has 5 filters

with 3 x 3 kernel and 1 x 1 stride, and we compute the average
of the results in each filter as its output. Noticeably, without
the first layer, the architecture of the quantum CNN model is
the same as the one of the 2-CNN model because we aim to
test if a quanvolutional layer can outperform a convolutional
layer. All the experiments are listed as follows:

1) Comparison concerning accuracy and loss values between
1) the linear model and the quantum linear model, 2)
the CNN model and the quantum CNN model and 3)
the 2-CNN model and the quantum CNN model during
training.

2) Evaluation of robustness of all models with adversarial
examples generated from the linear model, CNN model
and 2-CNN model. Note that we chose Carlini and Wagner
attack from ref. [17] to find adversarial examples with 0.01
step size and picked only test samples that a target model
correctly classified to generate adversarial examples.

V. RESULTS

This section discusses the results that we obtained from the
experiments. In particular, we evaluated the learning models
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Fig. 3: The outputs of some images in MNIST dataset after passing a quanvolutional layer with 5 filters where the first row is
original MNIST images, and the other rows are the outputs with respect to 5 filters.

in terms of three aspects: accuracy, loss value and adversarial
robustness.

A. Accuracy and loss value

First, we compared the linear model to the quantum linear
model. Then, we found that a linear model with an additional
quanvolutional layer achieved higher accuracy than and lower
loss values than the one without the quanvolutional layer as
demonstrated in Figure @a] and [Ab] respectively. Further, we
found the same explicit results when we compared the CNN
model to the quantum CNN model as seen in Figure ic|and fid]
However, those results are not surprising since the quantum
linear and quantum CNN models have more layers than the
linear and CNN models. Then, we compared the quantum CNN
model and the 2-CNN model and surprisingly discovered that
the quantum CNN model achieved lower loss values than the
2-CNN model. However, they achieved the same accuracy as

shown in Figure [de] and

B. Adversarial robustness

In addition, we tested all the models in terms of adversarial
robustness against CWA, which was a strong attack. According
to Figure [5| most of the models were significantly vulnerable
to adversarial examples generated from themselves. However,

the quantum linear model could achieve very high accuracy
on the adversarial examples created from itself. The reason
is that we picked only test samples that it could correctly
classify to create adversarial examples from the quantum linear
model, and CWA could not alter the confidences of the model
at all. Therefore, the quantum linear model is robust against
CWA. In addition, the quantum CNN model also achieved high
accuracy on adversarial examples created from the quantum
linear model because the quanvolutional layer could extract
features that were useful for specific images. Although those
quantum models were slightly affected by adversarial examples
created from the classical models, they were more robust than
the classical models. Furthermore, according to Figure 5] we
found that the more complex architecture of a model was, the
more adversarially robust it became. Therefore, it followed a
finding in [30].

VI. DISCUSSION AND CONCLUSION

A quanvolutional neural network (QNN) is a convolutional
neural network (CNN) with an additional quanvolutional layer
composed of n quantum circuits for n filters. We observed that
adding a quanvolutional layer to a model could increase its
accuracy and reduce its loss value. Also, when we substituted
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model and the quantum CNN model and (c, f) the 2-CNN model and the quantum CNN model respectively.

a convolutional layer with a quanvolutional layer (in the case
of the quantum CNN model and 2-CNN model), we noticed
that they achieved the same accuracy. Nonetheless, a model
with a quanvolutional layer could achieve a lower loss value

than the one with a convolutional layer.

In addition to accuracy and loss value, adversarial examples
created from one model could hardly transfer to that model with
a quanvolutional layer, and CWA could not harm the models
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with a quanvolutional layer. Thus, a neural network can benefit
from a quanvolutional layer. In the future, we plan to create a
quanvolutional neural networks whose quanvolutional layer is
trainable to determine its locally best parameters. We expect it
to outperform this version of the quanvolutional neural network
in terms of accuracy, loss value and adversarial robustness.
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