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Abstract: The proliferation of deep learning has transformed artificial intelligence, demonstrating
prowess in domains such as image recognition, natural language processing, and robotics. Nonethe-
less, deep learning models are susceptible to adversarial examples, well-crafted inputs that can
induce erroneous predictions, particularly in safety-critical contexts. Researchers actively pursue
countermeasures such as adversarial training and robust optimization to fortify model resilience. This
vulnerability is notably accentuated by the ubiquitous utilization of ReLU functions in deep learning
models. A previous study proposed an innovative solution to mitigate this vulnerability, presenting
a capped ReLU function tailored to bolster neural network robustness against adversarial examples.
However, the approach had a scalability problem. To address this limitation, a series of comprehen-
sive experiments are undertaken across diverse datasets, and we introduce the dynamic-max-value
ReLU function to address the scalability problem.

Keywords: machine learning; adversarial machine learning; robustness; trustworthy AI; adversarial
examples

MSC: 68T07; 68Q32; 62H30; 65K10

1. Introduction

Over the past few years, the adoption of deep machine learning models across various
sectors has significantly increased. This is attributed to their superior performance in
numerous tasks, and some have outperformed human capabilities. These tasks span
from medical diagnosis to autonomous driving, where the accuracy and reliability of
machine learning predictions are crucial. In the context of autonomous vehicles, for
instance, the robustness of these systems is non-negotiable, as any failure could potentially
endanger lives.

However, deep learning models exhibit a critical vulnerability to adversarial examples,
i.e., subtle and deliberately engineered modifications to input data crafted to mislead
the model into making erroneous decisions. Figure 1 illustrates an adversarial example
that can fool an image classifier into predicting the image as a cat instead of as a dog.
This susceptibility was first identified and discussed in seminal papers [1,2], highlighting
significant challenges in deploying these models in environments demanding high security
and reliability.

In our work, we show that the Static-Max-Value ReLU (S-ReLU) function designed
in [3] is theoretically more robust than a traditional ReLU function. However, it does not
work well on large datasets. Based on that analysis, we introduce the Dynamic-Max-Value
ReLU (D-ReLU) function, an advanced activation function designed to dynamically adjust
based on input data. This innovation enhances the model’s robustness, particularly when
applied to larger and more complex datasets. By tailoring the activation mechanism to the
specific characteristics of the input, D-ReLU aims to improve the overall performance of
deep learning models.
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Figure 1. Adversarial example that misleads an image classifier to predict the image as a cat.

Additionally, we explore the integration of D-ReLU into state-of-the-art pre-trained
deep learning models. Through this integration, we demonstrate how modifications to
traditional ReLU functions, alongside the addition of dense layers, can significantly enhance
model security and reliability. This approach not only modernizes the activation function
but also contributes to the stability and performance of established architectures.

To validate the effectiveness of D-ReLU, we conduct comprehensive experiments
across large datasets, such as CIFAR-10, CIFAR-100, and TinyImagenet. These experiments
aim to evaluate the practical performance and robustness improvements that D-ReLU
can offer. The findings from these studies underscore the potential of D-ReLU for safer
public deployment of deep learning models, making a compelling case for its adoption in
various applications.

The rest of this paper is organized as follows. Section 2 discusses works with the same
goals as our approach. Section 3 mentions and further analyzes the work inspiring us to
propose our approach. Section 4 defines our approach. Section 5 shows the setups of our
experiments. Section 6 details experimental applications of our approach and baselines
against white-box attacks. Section 7 details experimental applications of our approach and
baselines against white-box attacks. Section 8 reports on experiments with the models
trained on augmented datasets against adversarial attacks. Section 9 discusses how much
our approach generalizes in several perturbation bounds. Section 10 explains the limitations
of our approach. Section 11 demonstrates the broader impact of our approach. Section 12
concludes everything and discusses future works.

2. Related Works

Addressing the vulnerabilities posed by adversarial examples has led to a plethora
of research endeavors [2,4–9]. Among the proposed solutions, adversarial training has
emerged as a foremost strategy due to its relatively straightforward implementation and
proven effectiveness [7]. This approach involves training the model on a dataset supple-
mented with adversarially modified examples, thereby improving the model’s resilience
to similar attacks. However, the technique significantly extends the training duration and
computational demands.

Moreover, integrating autoencoders and generative adversarial networks (GANs)
has been explored to preprocess and potentially cleanse adversarial perturbations from
inputs [10,11]. These methods aim to improve the robustness of machine learning models
by denoising or altering the input data before the model processes them. Figure 2 demon-
strates the autoencoder method, which preprocesses an input to ensure that the classifier or
target model receives a clean input. This autoencoder was specifically trained to denoise ad-
versarial examples, effectively reducing the impact of adversarial perturbations. However,
these solutions necessitate additional model training and are challenged by the complexity
of handling large-scale data. The extra computational overhead and the need for extensive
training make these methods less feasible for real-time applications and large datasets.
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Figure 2. Denoised autoencoder for preprocessing of an adversarial example to create a
clean/denoised sample. The solid line is the process with the autoencoder, and the dashed line
is the process without the autoencoder.

In addition, some strategies have focused on leveraging the outputs from machine
learning models to promote robustness. One notable approach is randomized smooth-
ing [12], which involves injecting random noise, such as Gaussian noise, into the input
and generating multiple noisy versions of the input. Each version is then passed through
the machine learning model, and the final prediction is determined by a majority vote
among the predictions from the noisy inputs. While randomized smoothing provides a
form of certified robustness, it has significant drawbacks. The method requires multiple
passes through the model for each prediction, which is computationally expensive and
impractical for real-time systems, where quick responses are essential. Figure 3 illustrates
the randomized smoothing method. In this example, the system generates four predictions:
three predict the input as a dog, and one predicts it as a cat. Based on the majority vote, the
final output of the system is a dog.

Noise Generator

+
+

+
+

Dog
Dog

Cat

Dog

Target Dog

Figure 3. Randomized smoothing method, where the most common predictions are picked as the
output. In this example, four noises are generated by the noise generator.

Another method, defensive distillation, aims to reduce a model’s sensitivity to input
variations by training the model to output softened probabilities rather than hard clas-
sifications [13]. Despite its initial promise, defensive distillation is vulnerable to more
sophisticated adversarial attacks, as demonstrated by Carlini and Wagner [14]. This find-
ing indicates that while defensive distillation can provide some level of robustness, it is
not a comprehensive solution and only offers absolute protection against some types of
adversarial techniques.

Many works have also attempted to create detectors for adversarial examples, aiming
to filter out adversarial inputs before they reach the machine learning model [15–20]. These
detectors can identify potentially malicious inputs and prevent them from affecting the
model’s predictions. However, these approaches do not inherently improve the robustness
of the underlying machine learning models. Furthermore, some detector-based methods
rely on additional machine learning models, which can be vulnerable to adversarial attacks,
allowing attackers to bypass the detectors and compromise the target models. Figure 4
depicts this technique. Samples detected as adversarial examples are ignored. Another
drawback is that there will be no input for the machine learning model if there are only
adversarial examples in the real world.
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Figure 4. Adversarial example detection technique where the detected samples are thrown away.

All the techniques mentioned above focus on preprocessing, post processing, or
augmenting the inputs and outputs rather than directly modifying the models’ architectures.
However, the architecture of the models—mainly the activation functions—significantly
contributes to their vulnerability to adversarial examples. As illustrated in Figure 1, these
tiny perturbations are imperceptible to the human eye. Despite this, certain activation
functions, such as ReLU, enable these perturbations to amplify as they propagate through
the layers of machine learning models. Ultimately, this can lead to changes in the output-
layer values, consequently affecting the final prediction.

While some research [21–28] has aimed to customize the models’ architectures, only a
few works have specifically targeted the customization of activation functions. One such
effort by [21] involved quantizing activation functions, which can significantly reduce the
precision of activations and potentially degrade the model’s performance and robustness.
Another example is the ReLU6 activation function used in MobilenetV2 [29], which caps
the activation values at 6. Although ReLU6 was introduced to improve robustness, its
potential must be further explored to enhance robustness against adversarial attacks.

Amidst these challenges, we observe a potential opportunity with respect to conven-
tional solutions concerning the activation functions within deep learning architectures—in
particular, the ReLU function, which is known to contribute to vulnerabilities against
adversarial examples [2]. A ReLU function is formulated as max(x, 0), where x is an input
and max(·, ·) outputs the maximum value between two parameters. Our research aims
to directly address this by enhancing the design of ReLU functions to improve model
robustness without compromising accuracy.

3. Static-Max-ReLU Function

This novel activation function is termed the static-max-value ReLU function (S-ReLU)
and is defined as follows:

S-ReLU(x, m) = max(0, min(m, x)),

where x represents the incoming input and m is a predefined maximum value. Figure 5
shows an example of this activation function, where the max value is 2. We can see that the
function is capped after the input is 2. Theoretical analyses are presented to demonstrate
the enhanced robustness of this proposed function compared to a general ReLU function.
Furthermore, empirical experiments are detailed in the subsequent sections to empirically
validate its improved robustness.
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Figure 5. An example of S-ReLU with a max value of 2.

3.1. Theoretical Analysis

We previously introduced S-ReLU. Next, we aim to theoretically demonstrate how
S-ReLU can neutralize adversarial perturbations at each layer in this section.

Theorem 1. The outputs of S-ReLU functions always have an equal number of perturbations or
fewer relative to the outputs of ReLU functions, given the same inputs. Note that perturbations are
the additional noises affected by the corrupted input (also see Appendix A).

The utilization of the static-max-value ReLU function (S-ReLU) is likely associated with
a reduction in the Lipschitz constant, denoted as K. This observation is substantiated by
the findings presented in Theorem 1, which indicate a diminished discrepancy between the
outputs of a layer when processing a clean sample and an adversarial example, especially
when contrasted with the behavior of the standard ReLU activation function. The Lipschitz
inequality is expressed as

dY( f (x), f (x∗)) ≤ K · dX(x, x∗),

where x is a clean sample, x∗ is its adversarial example, f (·) is a classifier, dX(·, ·) is
a distance function (e.g., L2 norm and L∞ norm) for an input, and dY(·, ·) is a distance
function (e.g., L2 norm) for an output. The consequential reduction in the Lipschitz constant,
a consequence of employing S-ReLU, signifies an enhancement in the model’s robustness,
as a lower Lipschitz constant is indicative of reduced sensitivity to input perturbations and,
consequently, increased resilience against adversarial examples.

Next, we theoretically show how the max value (denoted by m) affects the amount of
adversarial perturbations in a layer.

Corollary 1. When the max value (m) of S-ReLU in a layer reduces, the layer’s outputs of clean
samples and adversarial examples are closer (also see Appendix B).

According to Corollary 1, we can reduce the max values of S-ReLU to reduce the
Lipschitz constant and eventually improve robustness. However, this technique may harm
the overall performance if the max values are too low.

3.2. Limitations

In this section, we discuss the limitations of S-ReLU. While S-ReLU successfully
enhances adversarial robustness in MNIST classifiers, its performance falters when applied
to more extensive datasets like CIFAR-10. The challenge arises from the substantial number
of layers and zero gradients, leading to what is commonly known as the gradient vanishing
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problem. The upcoming sections explain a compelling solution to address and overcome
this issue, revolutionizing the capability of classifiers on larger datasets.

4. Dynamic-Max-ReLU Functions

Sooksatra et al. [3] demonstrated the effectiveness of S-ReLU in enhancing both model
performance and adversarial robustness. They conducted a series of experiments that
showcased improvements in resistance to adversarial attacks facilitated by the S-ReLU
function. We also showed the theoretical results in the previous section. However, we
observed challenges when applying S-ReLU to larger datasets beyond MNIST, primarily
due to issues related to gradient vanishing.

To address these challenges, this section introduces a new variant, the dynamic-max-
value ReLU function (D-ReLU). This modified function aims to retain the advantages of
S-ReLU while mitigating its limitations on larger datasets. This approach uses the same
activation functions as S-ReLU. However, the max values (i.e., m) of those functions are
learnable. Therefore, at first, we set those values to be high, then try to minimize them
during training to improve the robustness such that the optimizer can adjust the models
with low max values. We minimize the max values because Table A1 shows that low max
values (i.e., m) lead to small output differences and improve robustness. Therefore, the loss
function can be formulated as

l(F(x, θ), y) + λ ∑
i

m2
i , (1)

where F(x, θ) is a classifier, x is an input, θ represents the parameters of F, y is the true label,
mi is the max value of neuron i with D-ReLU as its activation function, and λ balances the
model’s performance and adversarial robustness. Note that the value of mi is the number
of neurons whose activation functions are D-ReLU. Next, we illustrate how D-ReLU can
enhance adversarial robustness through a series of experiments. Before presenting our
findings, we first describe the experimental setup.

5. Experimental Setup

In this section, we provide a comprehensive breakdown of the methodologies and
resources utilized to configure and conduct our experimental studies. The components
detailed here are crucial for replicating our results and understanding the efficacy of our
proposed modifications in terms of model robustness.

First, we discuss the datasets employed in our experiments. These datasets were care-
fully selected to cover a variety of scenarios and complexity levels, which helps in testing the
resilience of our modified models across different data distributions and task complexities.

Secondly, we elaborate on the specific training details, which include the configuration
of the machine learning models, the choice of hyperparameters, and the training procedures
we adopted.

Next, we delve into the robustness evaluations. Here, we define the metrics and
methodologies used to assess the robustness of the models against adversarial attacks. This
includes a description of how adversarial examples were generated and the criteria used to
evaluate the model’s performance in the face of such perturbations.

Finally, we outline the baselines for comparison. This includes a discussion of the exist-
ing models and techniques against which our proposed modifications were benchmarked.
Describing these baselines provides context for the improvements our research introduces
and furnishes a clear contrast to demonstrate the incremental gains in robustness attributed
to our enhancements.

Each of these elements plays a vital role in shaping the experimental design and is
critical for assessing the practical impact of our research in enhancing the robustness of
deep learning models against sophisticated adversarial threats.
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5.1. Datasets

We used four datasets in this experiment: MNIST [30], CIFAR10 [31], CIFAR100 [31],
and TinyImagenet [32]. MNIST consists of 60,000 training images and 10,000 testing images,
each 28 × 28 pixels, representing handwritten digits from 0 to 9. Figure 6 shows some
examples from this dataset.

Figure 6. Examples of the MNIST dataset.

CIFAR10 is a dataset commonly used for machine learning and computer vision tasks.
CIFAR-10 consists of 60,000 32 × 32 color images in 10 different classes, with each class
representing a distinct object or animal category. The dataset is divided into 50,000 training
images and 10,000 testing images. It is widely used as a benchmark for developing and
evaluating image classification algorithms and models. Figure 7 shows some examples of
this dataset.

Figure 7. Examples of the CIFAR10 dataset.

The CIFAR100 dataset is a collection of 60,000 32 × 32 color images across 100 dif-
ferent classes, with each class containing 600 images. It serves as a benchmark for image
classification tasks, where each image belongs to one of the 100 fine-grained object classes.
This dataset is commonly used for evaluating machine learning algorithms and models due
to its diverse set of classes and relatively small image size. Figure 8 shows some examples
of this dataset.

Figure 8. Examples of the CIFAR100 dataset.

TinyImagenet is a subset of the large-scale Imagenet dataset designed for the training
of deep neural networks with smaller computational resources. It consists of 200 diverse
classes, with each class having 100,000 training images and 10,000 test images. Each image
has dimensions of 64 × 64 pixels, representing a wide range of object categories, making
it a useful dataset for tasks like classification, detection, and segmentation. TinyImagenet
serves as a more manageable alternative to the full Imagenet dataset for researchers and
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practitioners working on computer vision tasks. We partitioned the training set using an
80/20 ratio for validation. Figure 9 shows some examples of this dataset.

Figure 9. Examples of the TinyImagenet dataset.

5.2. Training Details

We used Tensorflow for this implementation. The optimization process employed
the Adam optimizer [33] with the initial learning rate set to 10−3. Additionally, we imple-
mented the ReduceLROnPlateau callback with a decay factor of 0.5 and a patience of 5, as
well as the EarlyStopping callback with patience of 10 based on the validation loss. The
ReduceLROnPlateau callback reduces the learning rate by multiplying it by its decay factor
when the validation loss does not improve for the patience epochs. The EarlyStopping
callback stops the training when the validation loss does not improve for the patience
epochs. The maximum number of epochs for the training procedure was set to 2000. We
conducted three independent training sessions for each model type. All subsequent results
presented in the following sections represent the average performance obtained from these
three trained models.

We also added a dense layer before the output layer. Incorporating a dense layer
before the output layer is motivated by findings from the experiment conducted in [3]. The
study demonstrated that employing S-ReLU in the last hidden layer yields superior results
compared to its placement in earlier layers. This layer’s activation function is D-ReLU for
our approach, as shown in Figure 10, while it is a general ReLU for other approaches.

Machine
Learning Model

Additional
Layer with
D-ReLU

Output
Layer

Input Output

Figure 10. Architecture of our approach with an added layer (in red) with D-ReLU before the
output layer.

5.3. Adversarial Attacks

We employed diverse adversarial attack strategies to compute the robust accuracy
for trained targeted models by using the test samples. The selected attacks encompass the
following methodologies:

• Fast Gradient Sign Method (FGSM) [2]: This attack creates adversarial examples by
perturbing input data in the direction that maximizes the model’s loss, utilizing the
sign of the gradients and a small constant.

• Project Gradient Descent (PGD) [7]: This attack is an iterative approach, repeatedly
updating the input by taking small steps in the gradient direction and projecting
the result back into a small neighborhood around the original data. While FGSM
is computationally less intensive and involves a single step, PGD is generally more
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effective and robust, requiring multiple iterations but producing adversarial examples
that are harder to defend against.

• Auto Projected Gradient Descent with DLR (APGD_DLR) [34]: This variant of APGD_CE
maintains the same underlying principles as APGD_CE but employs the Difference of
Logit Ratio Loss (DLR) [34] as the loss function.

• Carlini and Wagner Attack with L2 Norm (CW_L2) [6]: Diverging from the optimization-
based approach of the preceding attacks, CW_L2 is characterized by its slower adversarial
example discovery process. However, its potency in generating robust adversarial ex-
amples is noteworthy. It directly minimizes the difference between clean samples and
adversarial examples with the L2 norm and maximizes the misclassification confidence
as well.

• Square [35]: This is a black-box attack that utilizes random initialization with vertical
stripes to perturb images within a specified range. By focusing on sparse updates
grouped in a square pattern, the attack strategically alters the input, aiming to induce
subtle yet significant changes in image components. This method leverages the sen-
sitivity of convolutional networks to high-frequency perturbations and is designed
to generate successful perturbations within a limited radius, ensuring distinct differ-
ences relative to the original image. By strategically manipulating color channels and
employing sparse updates, the attack aims to maximize perturbation impact while
adhering to image constraints and network sensitivities.

5.4. SOTA Methods for Robustness

To justify our approach’s novelty, we also compared it to state-of-the-art methods for
adversarial robustness. We selected the following popular and effective methods:

• Adversarial Training [7]: This method retrains a model with adversarial examples
after its successful natural training. We retrained the models for 10 epochs.

• TRADES [36]: This method balances the performance and robustness of a model by
customizing the loss function. The loss function consists of two parts. The first part
increases the performance, and the other part improves the robustness by computing
the difference between the output distributions between the clean samples and their
adversarial counterparts. Please be aware that this method utilizes a parameter
denoted as β to strike a balance between performance and robustness. We adopted the
same values of β as those employed by the original authors—specifically, β = 1 and 6.

We used PGD to generate adversarial examples for all the mentioned methods.

6. White-Box Attack Experiments
6.1. Experimental Results for MNIST

We created two models for the MNIST dataset. The first one is a two-hidden-layer
dense network, and the other one is a shallow convolutional network. These networks are
enough to evaluate the MNIST dataset. We set the perturbation bound to 0.1 for FGSM,
PGD, PGD_CE, and PGD_DLR. We also set the perturbation bound to 18 for CW_L2.

The outcomes of tuning the balancer, denoted as λ in (1), are illustrated in Figure 11.
Note that at a balancer value of zero, the models were naturally trained, and they were
not robust against attacks at all. Through experimentation on both a dense network and a
shallow CNN, it was observed that elevating the balancer led to increased accuracies on
adversarial examples generated by FGSM, PGD, APGD_CE, and APGD_DLR. Interestingly,
this improvement in adversarial accuracy occurred while the accuracy on clean samples
remained relatively stable. This outcome aligns with our expectations. However, in the
case of adversarial examples generated by CW_L2, the accuracy did not exhibit a similar
increase. This anomaly can be attributed to the strength of the CW_L2 attack, where the
applied perturbation may remain consistent across all samples.



Mathematics 2024, 12, 3551 10 of 40

(a) Dense (b) Shallow CNN

Figure 11. Accuracy of two types of networks on clean MNIST and adversarial examples when
adding a dense layer with a D-ReLU function before the output layer.

Table 1 presents the performance (accuracy on clean samples) and robustness (ac-
curacy on adversarial examples) achieved by training models using both state-of-the-art
methods and our proposed approach. We carefully selected the optimal trade-off between
performance and robustness for our approach, with the corresponding balancer values
detailed in the table. Notably, our approach outperforms other methods across various
scenarios, except for the accuracy of the dense model on both clean samples and adversarial
examples generated by CW_L2. Importantly, our method achieves this superior perfor-
mance without the need to compute adversarial examples during the training process.
This observation underscores the efficacy of our approach in endowing machine learning
models with adversarial robustness without compromising overall performance.

Table 1. Accuracy metrics for dense networks and shallow CNNs under various robust training
schemes, evaluating them on both clean samples and adversarial examples generated by different
attacks on the MNIST dataset. Note that APCE is APGDCE, APDLR is APGDDLR, the accuracy metrics
in bold are the highest in a specific model among the different training methods, the numbers
in parentheses are the ranks for training methods under an architecture, TRADES-k indicates the
TRADES approach with β = k, and D-ReLU-k represents the D-ReLU approach with m = k.

Model Training Clean FGSM PGD APCE APDLR CWL2
% % % % % %

Dense

AT 98.10 (1) 89.77 (4) 87.70 (4) 87.63 (4) 87.47 (4) 12.57 (4)
TRADES-1 98.07 (2) 93.03 (2) 90.87 (2) 90.97 (2) 90.83 (2) 16.50 (1)
TRADES-6 96.20 (4) 91.40 (3) 89.53 (3) 89.57 (3) 89.13 (3) 12.83 (2)

D-ReLU-102 97.77 (3) 97.47 (1) 97.10 (1) 96.93 (1) 97.03 (1) 12.63 (3)

Shallow CNN

AT 99.20 (2) 96.77 (3) 95.83 (3) 95.70 (3) 95.73 (3) 16.47 (2)
TRADES-1 98.90 (3) 96.93 (2) 96.77 (2) 96.60 (2) 96.67 (2) 13.87 (4)
TRADES-6 98.17 (4) 96.47 (4) 95.30 (4) 95.03 (4) 95.03 (4) 16.23 (3)

D-ReLU-10−1 99.40 (1) 98.73 (1) 99.00 (1) 98.30 (1) 98.10 (1) 16.60 (1)

6.2. Experimental Results for CIFAR10

We trained six types of models: two-hidden-layer dense networks, shallow convo-
lutional neural networks (CNN), ResNet50 [37], ResNet101 [37], MobilenetV2 [29], and
InceptionV3 [38]. We set the perturbation bounds to 0.01 for FGSM, PGD, APGD_CE, and
APGE_DLR. Moreover, the bound for CW_L2 was set to 18.

Figure 12 provides a detailed visualization of the performance outcomes for various
models that employ different balancer values under multiple adversarial attack scenarios.
This figure enables a comparative analysis, particularly focusing on how these models
withstand adversarial perturbations when adjusted with varying balancer levels.
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(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 12. Accuracy of several types of networks on clean CIFAR10 and adversarial examples when
adding a dense layer with a D-ReLU function before the output layer.

Consistent with our prior observations on the MNIST dataset, we noted a similar
trend in the CIFAR-10 dataset. Specifically, as the balancer values increase, there is a
noticeable enhancement in robustness against several attacks. This pattern aligns with our
expectations and demonstrates that carefully calibrated balancer values can significantly
improve a model’s resistance to certain types of adversarial attacks. However, it is important
to highlight that while higher balancer values enhance robustness, there is a threshold
beyond which further increases can negatively impact overall model performance. This
suggests a trade-off where excessively high balancer values may lead to the deminishment
of accuracy or other performance metrics under standard conditions.

In light of these findings, the D-ReLU mechanism appears to be particularly effective.
For medium-sized datasets such as CIFAR10 and advanced models including ResNet,
Mobilenet, and Inception, D-ReLU strikes a balance that optimizes robustness without
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excessively compromising overall performance. This makes D-ReLU a promising choice
for practitioners looking to enhance model robustness in practical applications.

The implications of these results are multifaceted. First, they underscore the impor-
tance of balancing robustness and performance. While enhancing defense mechanisms
against adversarial attacks is crucial, maintaining high levels of accuracy and performance
in non-adversarial scenarios is equally important. This balance ensures that the models
remain useful and effective in real-world applications where both adversarial and benign
inputs are encountered.

Secondly, the trend observed with escalating balancer values offers insights into the
tuning process for adversarial robustness. It suggests that there is a critical balancer value
range that optimizes defense mechanisms without significantly degrading the model’s
general performance. Identifying this optimal range can guide the development of more
resilient machine learning systems.

Furthermore, the suitability of D-ReLU for state-of-the-art models such as ResNet,
Mobilenet, and Inception indicates its potential for broader adoption. These models are
widely used in various applications due to their performance and efficiency. Enhancing
their robustness with D-ReLU can make them more reliable in adversarial settings, thereby
extending their applicability in security-sensitive domains such as autonomous driving,
medical imaging, and financial forecasting.

We also experimented with placing the additional convolutional layer with D-ReLU
after the input layer instead of incorporating it in the dense layer before the output layer.
Figure 13 presents the outcomes, illustrating the impact on several CNN architectures when
the D-ReLU layer is added at the beginning of the network.

(a) Shallow CNN (b) MobilenetV2

(c) InceptionV3

Figure 13. Accuracy of several types of CNNs on clean CIFAR10 and adversarial examples when
adding a convolutional layer with a D-ReLU function after the input layer.



Mathematics 2024, 12, 3551 13 of 40

The results indicate that positioning the D-ReLU layer early in the network does not
yield the same level of effectiveness as when placed in deeper layers. For the Shallow CNN
(Figure 13a), MobilenetV2 (Figure 13b), and InceptionV3 (Figure 13c), there is a notable
decline in adversarial robustness across different attack types (FGSM, PGD, APGD_CE,
APGD_DLR, and CW_L2) as compared to when the D-ReLU layer is situated deeper in
the network. This trend suggests that the D-ReLU function, when applied later in the
model, significantly enhances the model’s ability to withstand adversarial attacks while
maintaining high accuracy on clean samples.

The implications of these findings are significant for the design of robust neural
network architectures. Incorporating D-ReLU in deeper layers allows the network to better
leverage its properties for to improve adversarial robustness. This highlights the importance
of strategic layer placement within CNNs, particularly for applications requiring high
resilience to adversarial perturbations without compromising performance on clean data.

Table 2 provides a comprehensive comparison of accuracy metrics and rankings for
various robust training schemes applied to different models on the CIFAR10 dataset. The
table reveals that D-ReLU consistently achieves an optimal balance between performance
on clean samples and robustness against adversarial attacks, particularly excelling in the
context of deep networks like ResNet and InceptionV3.

Table 2. Accuracy metrics for multiple types of networks under various robust training schemes,
evaluating them on both clean samples and adversarial examples generated by different adversarial
attacks on the CIFAR10 dataset. Note that APCE is APGDCE, APDLR is APGDDLR, the accuracy
metrics in bold are the highest in a specific model among the different training methods, the numbers
in parentheses are the ranks for training methods under an architecture, TRADES-k indicates the
TRADES approach with β = k, and D-ReLU-k represents the D-ReLU approach with m = k.

Model Training Clean FGSM PGD APCE APDLR CWL2
% % % % % %

Dense

AT 52.33 (1) 34.20 (2) 32.83 (2) 32.73 (2) 31.80 (2) 40.10 (2)
TRADES-1 52.32 (2) 29.97 (3) 29.23 (3) 29.20 (3) 28.37 (3) 38.67 (3)
TRADES-6 51.30 (4) 37.00 (1) 36.53 (1) 36.50 (1) 34.57 (1) 42.30 (1)

D-ReLU-10−7 51.87 (3) 26.03 (4) 23.87 (4) 23.80 (4) 23.77 (4) 36.10 (4)

Shallow CNN

AT 67.13 (2) 42.83 (2) 40.07 (2) 39.90 (2) 38.37 (2) 50.67 (2)
TRADES-1 67.37 (1) 38.83 (4) 35.93 (4) 35.97 (4) 34.13 (4) 48.60 (4)
TRADES-6 63.47 (4) 46.13 (3) 44.80 (3) 44.80 (3) 42.67 (3) 51.67 (3)

D-ReLU-100 66.37 (3) 65.60 (1) 65.60 (1) 64.60 (1) 64.07 (1) 65.83 (1)

ResNet50

AT 78.20 (2) 54.77 (2) 49.37 (2) 48.90 (2) 49.97 (2) 63.00 (2)
TRADES-1 75.63 (4) 52.12 (4) 40.77 (4) 39.87 (4) 40.20 (4) 56.43 (4)
TRADES-6 71.63 (3) 54.20 (3) 50.90 (3) 50.40 (3) 48.23 (3) 57.63 (3)

D-ReLU-104 78.87 (1) 78.83 (1) 78.73 (1) 78.20 (1) 78.40 (1) 78.87 (1)

ResNet101

AT 68.90 (3) 44.90 (4) 40.33 (2) 39.43 (2) 38.27 (2) 49.30 (3)
TRADES-1 74.60 (1) 47.07 (2) 32.87 (4) 31.17 (4) 31.37 (4) 51.40 (2)
TRADES-6 66.67 (4) 45.43 (3) 39.80 (3) 39.17 (3) 35.93 (3) 47.67 (4)

D-ReLU-104 75.10 (2) 75.03 (1) 75.37 (1) 74.73 (1) 74.67 (1) 75.10 (1)

MobilenetV2

AT 77.97 (2) 46.50 (2) 32.93 (4) 30.73 (4) 32.10 (4) 51.80 (2)
TRADES-1 73.13 (4) 46.23 (3) 31.00 (3) 28.87 (3) 28.77 (3) 49.37 (4)
TRADES-6 68.40 (3) 48.80 (2) 43.23 (2) 43.03 (2) 40.80 (2) 51.13 (3)

D-ReLU-102 81.67 (1) 81.57 (1) 82.00 (1) 80.87 (1) 80.77 (1) 81.67 (1)

InceptionV3

AT 84.60 (2) 64.27 (2) 58.80 (2) 58.30 (2) 59.33 (2) 66.47 (2)
TRADES-1 82.53 (3) 62.30 (3) 52.67 (4) 51.90 (4) 51.87 (4) 62.40 (4)
TRADES-6 76.97 (4) 61.97 (4) 58.00 (3) 57.80 (3) 56.03 (3) 62.10 (3)

D-ReLU-102 87.17 (1) 86.70 (1) 86.57 (1) 86.13 (1) 86.23 (1) 86.83 (1)
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Interestingly, while TRADES with β = 6 demonstrated superior robustness for the
dense network, it did so at the expense of performance on clean samples. In contrast, our
D-ReLU approach significantly outperformed other methods in generalizing to adversarial
examples, and it did so without the need to compute adversarial examples during training.
This characteristic is particularly advantageous, as it simplifies the training process and
reduces computational overhead.

Moreover, D-ReLU’s ability to maintain high performance on clean samples is note-
worthy. Unlike other robust training schemes that often sacrifice accuracy on clean data to
gain adversarial robustness, D-ReLU preserves the integrity of clean sample performance,
making it a highly efficient and practical approach for enhancing model robustness without
compromising overall accuracy. This makes D-ReLU a highly effective method for deploy-
ing robust models in real-world scenarios where maintaining high accuracy on clean data
is crucial.

Additionally, we performed an ANOVA test and obtained an F score of 17.4, surpassing
the critical value of 3.92 at α = 0.01. Given that the F score was significantly higher than
the critical value, we reject the null hypothesis and conclude that there are significant
differences among the approaches with 99% confidence. Moreover, considering the average
accuracy, it is evident that D-ReLU significantly enhances model robustness.

Furthermore, we conducted a non-parametric test, specifically the Friedman test, to
assess the differences between the results. This test uses the ranks provided in Table 2. The
test yielded a χ2 score of 39.43 and an FF score of 20.12. The critical value (α = 0.01) ranged
between 2.13 and 2.18 for 3 and 105 degrees of freedom, respectively. Given that both the
chi-square and FF scores were significantly higher than the critical value, we reject the null
hypothesis. Consequently, we conclude that the models differ significantly from each other
with a confidence level of 99%.

Subsequently, we employed the Nemenyi test [39] to pinpoint which pairs of classifiers
exhibited significant differences. The computed critical difference was 0.656. The differences
in the average ranks between D-ReLU and the other techniques are reported as follows: 0.86
for adversarial training, 1.89 for TRADES-1, and 1.14 for TRADES-6. Each of these differences
surpasses the critical difference. Therefore, we conclude that classifiers utilizing D-ReLU
demonstrate significantly greater robustness compared to those using all other methods.

6.3. Experimental Results for CIFAR100

Figure 14 illustrates the accuracy of various CNN architectures on clean CIFAR100
samples and adversarial examples generated by different white-box attacks. The figures
reveal several important trends. Across all models, we observe a general pattern where the
accuracy on clean samples remains relatively stable or slightly decreases as the balancer
value increases. This stability indicates that the addition of the D-ReLU layer does not
significantly compromise the model’s performance on clean data, which is crucial for
maintaining the overall utility of the model in non-adversarial settings.

There is a notable improvement in robustness with increasing balancer values for ad-
versarial examples. This trend is consistent across all considered types of white-box attacks:
FGSM, PGD, APGD_CE, APGD_DLR, and CW_L2. The accuracy on adversarial examples
shows a significant upward trajectory, especially for higher balancer values, suggesting
that the D-ReLU function effectively mitigates the impact of adversarial perturbations.
This improvement in robustness is particularly pronounced in more complex models like
ResNet50, ResNet101, MobilenetV2, and InceptionV3.
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(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 14. Accuracy of several types of networks on clean CIFAR100 and adversarial examples when
adding a dense layer with a D-ReLU function before the output layer.

Table 3 shows a comparison between our approach and the other baselines concerning
performance and robustness. Although the baselines outperform our approach in three
architectures, our approach can provide more robust models than the other baselines in
every case. Particularly in the cases of MobilenetV2 and InceptionV3, our approach exhibits
notably superior performance compared to the other baselines.
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Table 3. Accuracy metrics for multiple types of networks under various robust training schemes,
evaluating them on both clean samples and adversarial examples generated by different adversarial
attacks on the CIFAR100 dataset. Note that APCE is APGDCE, APDLR is APGDDLR, the accuracy
metrics in bold are the highest in a specific model among the different training methods, the numbers
in parentheses are the ranks for training methods under an architecture, TRADES-k indicates the
TRADES approach with β = k, and D-ReLU-k represents the D-ReLU approach with m = k.

Model Training Clean FGSM PGD APCE APDLR CWL2
% % % % % %

Dense

AT 24.47 (1) 14.80 (2) 14.30 (2) 14.20 (2) 12.63 (2) 17.53 (2)
TRADES-1 22.97 (3) 13.37 (4) 13.23 (4) 13.17 (4) 11.30 (4) 16.27 (4)
TRADES-6 23.27 (2) 13.87 (3) 13.73 (3) 13.60 (3) 12.27 (3) 16.60 (3)

D-ReLU-10−1 21.47 (4) 21.03 (1) 21.00 (1) 20.03 (1) 19.77 (1) 20.73 (1)

AT 37.03 (1) 17.73 (3) 16.47 (3) 16.30 (3) 14.43 (3) 22.30 (3)
Shallow TRADES-1 32.60 (3) 12.87 (4) 11.50 (4) 11.43 (4) 9.47 (4) 18.50 (4)

CNN TRADES-6 34.80 (2) 18.67 (2) 17.87 (2) 17.87 (2) 15.40 (2) 22.33 (2)
D-ReLU-1 28.63 (4) 27.53 (1) 27.33 (1) 24.87 (1) 24.60 (1) 27.23 (1)

AT 48.67 (3) 26.67 (3) 21.83 (3) 21.53 (3) 23.13 (3) 31.90 (2)

ResNet50 TRADES-1 48.97 (2) 26.57 (4) 19.80 (4) 19.27 (4) 20.03 (4) 30.50 (4)
TRADES-6 43.97 (4) 28.90 (2) 26.03 (2) 25.70 (2) 24.03 (2) 30.63 (3)

D-ReLU-102 52.33 (1) 51.53 (1) 52.47 (1) 50.20 (1) 51.17 (1) 51.63 (1)

AT 44.97 (3) 23.57 (4) 18.67 (3) 18.33 (3) 18.77 (3) 27.77 (4)

ResNet101 TRADES-1 48.10 (1) 24.17 (3) 17.70 (4) 16.87 (4) 17.80 (4) 28.10 (3)
TRADES-6 45.20 (2) 28.21 (2) 20.53 (2) 19.32 (2) 19.44 (2) 30.02 (2)
D-ReLU-1 44.20 (4) 39.03 (1) 43.10 (1) 37.33 (1) 36.60 (1) 40.63 (1)

AT 51.37 (2) 23.83 (3) 15.30 (3) 14.43 (3) 15.73 (2) 28.50 (2)

MobilenetV2 TRADES-1 42.97 (3) 19.50 (4) 9.47 (4) 8.20 (4) 8.60 (4) 20.70 (4)
TRADES-6 40.13 (4) 24.50 (2) 20.73 (2) 20.13 (2) 18.87 (3) 25.40 (3)
D-ReLU-1 56.40 (1) 54.90 (1) 55.07 (1) 53.80 (1) 54.17 (1) 54.97 (1)

AT 56.37 (3) 32.57 (4) 27.20 (3) 26.60 (3) 28.80 (3) 34.33 (4)

InceptionV3 TRADES-1 60.63 (2) 35.63 (2) 26.80 (4) 25.83 (4) 26.50 (4) 35.07 (2)
TRADES-6 51.10 (4) 34.43 (3) 31.20 (2) 30.90 (2) 29.50 (2) 34.47 (3)

D-ReLU-102 67.07 (1) 65.10 (1) 64.43 (1) 63.47 (1) 63.70 (1) 65.27 (1)

6.4. Experimental Results for TinyImagenet

Figure 15 presents the accuracy of several neural network architectures on clean Tiny-
Imagenet samples and adversarial examples produced by various white-box attacks. The
assessed networks include Dense and Shallow CNN, ResNet50, ResNet101, MobilenetV2,
and InceptionV3. The experiments involved integrating a dense layer with a D-ReLU
function before the output layer and varying the balancer value to observe its impact on
model performance and robustness.

The graphs demonstrate a consistent pattern across all models, indicating the efficacy
of the D-ReLU layer in enhancing adversarial robustness. On clean TinyImagenet samples,
the accuracy generally remains stable or exhibits minor fluctuations as the balancer value
changes. This stability suggests that the addition of the D-ReLU layer does not significantly
impair the model’s ability to correctly classify clean samples, maintaining its utility in
standard scenarios.

For adversarial examples generated by white-box attacks (FGSM, PGD, APGD_CE,
APGD_DLR, and CW_L2), there is a clear trend of improved robustness with increasing
balancer values. The accuracy on these adversarial examples improves markedly, especially
at higher balancer values, indicating that the D-ReLU function effectively counteracts the
adversarial perturbations. This improvement is particularly evident in complex models
like ResNet50, ResNet101, MobilenetV2, and InceptionV3, which show substantial gains in
accuracy against adversarial attacks.
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(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 15. Accuracy of several types of networks on clean TinyImagenet and adversarial examples
when adding a dense layer with a D-ReLU function before the output layer.

Table 4 shows the performance and robustness of our approach and the other baselines
on the TinyImagenet dataset. The table also shows the ranking of the approaches in
each architecture. Our approach struggles to find a balance between performance and
robustness. However, in MobilenetV2, our approach outperforms the other ones in terms
of performance and robustness.
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Table 4. Accuracy metrics for multiple types of networks under various robust training schemes,
evaluating them on both clean samples and adversarial examples generated by different adversarial
attacks on the TinyImagenet dataset. Note that APCE is APGDCE, APDLR is APGDDLR, the accuracy
metrics in bold are the highest in a specific model among the different training methods, the numbers
in parentheses are the ranks for training methods under an architecture, TRADES-k indicates the
TRADES approach with β = k, and D-ReLU-k represents the D-ReLU approach with m = k.

Model Training Clean FGSM PGD APCE APDLR CWL2
% % % % % %

Dense

AT 8.63 (2) 5.40 (2) 5.13 (3) 5.00 (3) 4.27 (2) 7.00 (4)
TRADES-1 8.57 (3) 4.80 (4) 4.77 (4) 4.73 (4) 4.10 (3) 7.47 (1)
TRADES-6 8.70 (1) 5.07 (3) 5.13 (2) 5.10 (2) 3.93 (4) 7.30 (2)

D-ReLU-10−1 7.53 (4) 7.30 (1) 7.53 (1) 6.87 (1) 6.83 (1) 7.30 (3)

AT 18.33 (1) 4.80 (2) 4.17 (2) 4.10 (2) 2.73 (2) 10.60 (2)
Shallow TRADES-1 14.93 (3) 2.17 (4) 1.60 (4) 1.60 (4) 0.97 (4) 8.10 (3)

CNN TRADES-6 16.37 (2) 4.57 (3) 4.07 (3) 3.97 (3) 2.67 (3) 10.63 (1)
D-ReLU-1 8.40 (4) 8.20 (1) 7.97 (1) 7.20 (1) 6.93 (1) 7.93 (4)

AT 40.67 (3) 17.57 (4) 13.17 (4) 12.93 (4) 14.03 (4) 30.87 (4)

ResNet50 TRADES-1 48.10 (1) 22.15 (3) 16.10 (3) 15.55 (3) 14.95 (3) 36.35 (1)
TRADES-6 40.97 (2) 23.93 (2) 21.87 (2) 21.57 (2) 19.77 (2) 31.57 (3)
D-ReLU-1 38.53 (4) 32.43 (1) 36.93 (1) 29.33 (1) 30.83 (1) 35.83 (2)

AT 32.73 (3) 15.43 (4) 13.10 (4) 12.63 (4) 11.40 (4) 24.17 (4)

ResNet101 TRADES-1 47.57 (1) 20.50 (3) 15.07 (3) 14.57 (3) 14.43 (3) 34.73 (1)
TRADES-6 39.13 (2) 22.30 (1) 20.37 (2) 20.03 (1) 17.67 (2) 30.63 (2)
D-ReLU-1 27.83 (4) 22.13 (2) 25.77 (1) 19.93 (2) 21.10 (1) 24.73 (3)

AT 50.00 (2) 23.13 (3) 16.73 (3) 16.30 (3) 16.97 (3) 37.73 (1)

MobilenetV2 TRADES-1 48.87 (3) 20.60 (4) 13.57 (4) 12.83 (4) 12.00 (4) 35.10 (3)
TRADES-6 43.20 (4) 23.70 (2) 21.23 (2) 20.87 (2) 19.03 (2) 33.73 (4)
D-ReLU-1 51.10 (1) 33.63 (1) 38.00 (1) 31.07 (1) 34.63 (1) 37.03 (2)

AT 39.07 (4) 18.67 (4) 14.63 (4) 14.57 (4) 15.20 (4) 27.90 (4)

InceptionV3 TRADES-1 60.43 (1) 32.53 (1) 23.37 (3) 22.67 (2) 24.13 (2) 46.17 (1)
TRADES-6 50.43 (2) 32.03 (2) 29.23 (1) 28.90 (1) 28.30 (1) 40.40 (2)
D-ReLU-1 42.63 (3) 22.13 (3) 26.47 (2) 19.83 (3) 22.50 (3) 27.97 (3)

6.5. Discussion

The consistent improvements in adversarial robustness across the MNIST, CIFAR10,
CIFAR100, and TinyImagenet datasets highlight several key implications.

First, the D-ReLU layer’s effectiveness across different datasets and model architec-
tures indicates its broad applicability. It suggests that this technique can be reliably used to
enhance the adversarial robustness of various neural networks without specific tailoring to
individual datasets.

Second, despite the significant gains in adversarial robustness, the performance on
clean samples remains largely unaffected. This balance ensures that the models remain
useful and reliable in standard conditions, which is critical for practical deployment.

Third, the approach scales well with model complexity. More advanced models like
ResNet and InceptionV3, which are typically used in real-world applications, benefit greatly
from the addition of a D-ReLU layer, showing substantial improvements in defending
against sophisticated white-box attacks.

Moreover, by effectively countering a range of white-box attacks, the D-ReLU layer
enhances the overall security of neural networks. This makes it a valuable addition to the
suite of techniques aimed at protecting models against adversarial threats.

The integration of a dense layer with a D-ReLU function before the output layer provides
a robust defense mechanism against white-box attacks across the MNIST, CIFAR10, CIFAR100,
and TinyImagenet datasets. This approach ensures that neural networks can maintain high
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performance on clean samples while significantly improving their resilience to adversarial
perturbations, thereby enhancing their reliability and security in various applications.

7. Black-Box Attack Experiments

In addition to the promising results against white-box attacks, we also evaluated the
performance of the D-ReLU function in enhancing the robustness of CNNs against black-box
attacks, specifically the Square attack. Figures 16–18 offer valuable insights into how D-ReLU
impacts various models across different datasets under black-box attack scenarios.

(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 16. Accuracy of several types of networks on clean CIFAR10 and adversarial examples
generated by a black-box attack (i.e., square attack) when adding a dense layer with a D-ReLU
function before the output layer.
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(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 17. Accuracy of several types of networks on clean CIFAR100 and adversarial examples
generated by a black-box attack (i.e., square attack) when adding a dense layer with a D-ReLU
function before the output layer.
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(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 18. Accuracy of several types of networks on clean TinyImagenet and adversarial examples
generated by a black-box attack (i.e., square attack) when adding a dense layer with a D-ReLU
function before the output layer.

7.1. Experimental Results for CIFAR10

In Figure 16, the accuracy of several network types on clean CIFAR10 data and ad-
versarial examples generated by the black-box attack is depicted. For dense networks
(Figure 16a), the accuracy on clean samples remains relatively stable across different bal-
ancer values. However, the accuracy against adversarial examples shows a notable im-
provement with increasing balancer values, indicating enhanced robustness. Shallow
CNNs (Figure 16b) display a similar pattern, with a significant improvement in adversarial
robustness at higher balancer values, while the clean accuracy remains consistent.
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ResNet50 and ResNet101 (Figure 16c,d) both demonstrate substantial gains in adver-
sarial robustness with increasing balancer values. This trend suggests that deeper networks
benefit more from the D-ReLU layer in terms of adversarial resilience. MobilenetV2
(Figure 16e) also shows consistent improvement in adversarial accuracy with higher bal-
ancer values, despite slight fluctuations in clean accuracy. InceptionV3 (Figure 16f) exhibits
a strong increase in adversarial robustness with higher balancer values while maintaining
high accuracy on clean samples.

7.2. Experimental Results for CIFAR100

Figure 17 presents the accuracy metrics for CIFAR100. Dense networks (Figure 17a)
show moderate improvement in adversarial robustness with the addition of the D-ReLU
layer, though clean accuracy remains largely unaffected. Shallow CNNs (Figure 17b) follow
a clear trend of increasing adversarial accuracy with higher balancer values, indicating the
D-ReLU layer’s effectiveness in enhancing robustness.

For deeper networks like ResNet50 and ResNet101 (Figures 16c and 17d), there is
improved adversarial robustness with increasing balancer values, though a slight decrease
in clean accuracy is observed at higher balancer values. MobilenetV2 (Figure 17e) displays
marked improvement in adversarial robustness with higher balancer values, with mini-
mal fluctuations in clean accuracy. InceptionV3 (Figure 17f) shows the highest gains in
adversarial robustness, maintaining strong performance on clean samples.

7.3. Experimental Results for TinyImagenet

In Figure 18, the results for TinyImagenet are detailed. Dense networks (Figure 18a)
show a significant increase in adversarial robustness with higher balancer values, while
clean accuracy remains stable. Shallow CNNs (Figure 18b) exhibit improved adversarial
accuracy with higher balancer values, though clean accuracy shows some variability.

Deeper networks like ResNet50 and ResNet101 (Figure 18c,d) benefit significantly in
terms of adversarial robustness with increasing balancer values, with slight fluctuations in
clean accuracy. MobilenetV2 (Figure 18e) demonstrates notable improvement in adversarial
robustness with higher balancer values, with clean accuracy remaining relatively unaffected.
InceptionV3 (Figure 18f) shows the most substantial gains in adversarial robustness among
all tested architectures, with clean accuracy remaining high.

7.4. Comparison to Other Baselines

Table 5 provides accuracy metrics and rankings for various neural network models
trained under different robust training schemes and evaluated on clean samples, as well as
adversarial examples generated by a black-box attack (denoted as Square), on the CIFAR10,
CIFAR100, and TinyImagenet datasets. The displayed values are percentages, with the
highest accuracy metrics highlighted in bold for each specific model among the different
training methods.

The TRADES-6 strategy demonstrates superior performance across most scenarios
in the dense network. In the Shallow CNN architecture, the D-ReLU method showcases
a competitive edge over TRADES-based approaches specifically on the CIFAR10 dataset.
However, TRADES-6 surpasses D-ReLU in other instances. For the ResNet50, MobilenetV2,
and InceptionV3 models, D-ReLU stands out as the top performer on the CIFAR10 and
CIFAR100 datasets. Nevertheless, its efficiency on the TinyImagenet dataset falls short
in comparison to the TRADES-based techniques, highlighting a trade-off between perfor-
mance and robustness. ResNet101 presents a mix of results, showcasing variability in its
performance outcomes.
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Table 5. Accuracy metrics for multiple types of networks under various robust training schemes,
evaluated on both clean samples and adversarial examples generated by a black-box attach (i.e.,
Square) on the CIFAR10, CIFAR100, and TinyImagenet datasets. Note that the accuracy metrics
in bold are the highest in a specific model among the different training methods, the numbers in
parentheses are the ranks for training methods under an architecture, and TRADES-k indicates the
TRADES approach with β = k.

Model Training
CIFAR10 CIFAR100 TinyImagenet

Clean Square Clean Square Clean Square
% % % % % %

Dense
TRADES-1 52.33 (1) 34.03 (2) 22.97 (2) 13.90 (2) 8.57 (2) 4.80 (2)
TRADES-6 51.30 (2) 38.47 (1) 23.27 (1) 14.13 (1) 8.70 (1) 4.87 (1)

D-ReLU 48.43 (3) 33.43 (3) 21.47 (3) 11.33 (3) 7.53 (3) 3.07 (3)

Shallow CNN
TRADES-1 67.37 (1) 45.93 (3) 32.60 (3) 15.47 (2) 14.93 (3) 5.43 (2)
TRADES-6 64.50 (3) 49.30 (2) 34.80 (1) 19.70 (1) 16.37 (1) 7.13 (1)

D-ReLU 66.37 (2) 51.33 (1) 32.87 (2) 13.53 (3) 16.20 (2) 5.40 (3)

ResNet50
TRADES-1 75.70 (2) 50.70 (3) 48.97 (2) 25.10 (3) 48.40 (1) 26.53 (1)
TRADES-6 71.63 (3) 53.57 (2) 43.97 (3) 27.03 (2) 40.97 (2) 25.03 (2)

D-ReLU 78.53 (1) 62.87 (1) 52.33 (1) 28.43 (1) 38.53 (3) 20.50 (3)

ResNet101
TRADES-1 74.60 (1) 45.37 (2) 48.10 (1) 23.20 (2) 47.57 (1) 25.07 (1)
TRADES-6 66.67 (3) 43.63 (3) 10.67 (3) 1.67 (3) 39.13 (2) 24.00 (2)

D-ReLU 72.00 (2) 53.03 (1) 44.20 (2) 28.07 (1) 27.83 (3) 12.43 (3)

MobilenetV2
TRADES-1 73.13 (2) 43.13 (3) 42.97 (2) 15.40 (3) 48.87 (2) 25.00 (2)
TRADES-6 68.60 (3) 49.17 (2) 40.13 (3) 22.30 (2) 43.20 (3) 26.23 (1)

D-ReLU 82.90 (1) 61.03 (1) 56.40 (1) 27.90 (1) 51.10 (1) 18.33 (3)

InceptionV3
TRADES-1 82.53 (2) 64.17 (2) 60.63 (2) 34.50 (2) 60.43 (1) 39.60 (1)
TRADES-6 76.97 (3) 62.40 (3) 51.10 (3) 34.03 (3) 50.43 (2) 36.10 (2)

D-ReLU 87.17 (1) 74.20 (1) 67.07 (1) 41.40 (1) 42.63 (3) 24.63 (3)

7.5. Discussion

The effectiveness of D-ReLU against black-box attacks has several important impli-
cations. First, it highlights the potential of D-ReLU to provide robust defenses in more
realistic adversarial settings where attackers lack full knowledge of the model’s parameters
and architecture. This makes D-ReLU a valuable tool for real-world applications where
security and reliability are paramount.

Second, the consistent improvement in robustness across different architectures and
datasets suggests that D-ReLU can be widely applied to various deep learning models,
making it a versatile and scalable solution for enhancing adversarial defenses.

Lastly, the ability of D-ReLU to improve robustness without compromising perfor-
mance on clean samples is particularly noteworthy, especially on the CIFAR10 and CI-
FAR100 datasets. This balance between robustness and accuracy ensures that models
remain effective for their intended tasks while being resilient to adversarial perturbations.
However, it is still difficult to train the model with D-ReLU on a large dataset like the
TinyImagenet dataset.

Overall, the findings underscore the robustness of the D-ReLU function against black-
box attacks, further validating its utility in strengthening the security of deep learning
models in diverse and practical scenarios. This reinforces the importance of integrat-
ing such robust functions into model architectures to safeguard against a wide range of
adversarial threats.
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8. Experiments with Augmented Dataset

The study conducted by Wang et al. [40], as highlighted within the extensive literature
review, has brought to light the significant impact of incorporating the elucidating diffusion
model (EDM) proposed by Karras et al. [41] as a means to effectively mitigate the prevalent
issue of overfitting encountered during adversarial training processes. By augmenting the
training dataset with the EDM, promising results have been observed in terms of enhancing
the robustness and generalization capabilities of the learning model. Against this backdrop,
the subsequent analysis presented in this section undertakes a comprehensive evaluation
through comparative studies between our proposed methodology and the renowned
TRADES technique introduced by Zhang et al. [36]. This comparative analysis is conducted
utilizing the augmented training samples, demonstrating the efficacy and superiority of
our approach in bolstering the resilience of the learning system against adversarial attacks
and enhancing overall performance metrics.

In every epoch, a combination of generated samples and original training samples is
utilized. As outlined in the research conducted by Wang et al. [40], a specific configuration
is followed for the CIFAR10 and CIFAR100 datasets. Here, a random selection process is
employed to choose samples from both the original dataset and the generated samples.
Approximately 30% of the training samples are sourced from the original dataset, while the
remaining samples are from the generated dataset. It is imperative to note that despite this
mixing process, the overall size of the training dataset remains constant.

Furthermore, the research also stipulates the use of a hyperparameter value of β = 5
for the TRADES method. Moving on to the TinyImagenet dataset, a slightly different
approach is adopted. In this case, 20% of the training samples are sourced from the original
dataset, with the remaining samples coming from the generated dataset. Consistent with
the literature by Wang et al. (2023) [40], a value of β = 8 is utilized for the TRADES
method in this context. To ensure a fair comparison, the same β = 5 value is also utilized
in this scenario.

8.1. Experimental Results

The visual representations displayed in Figure 19 for CIFAR10 and Figure 20 for
CIFAR100 offer an insightful analysis of the performance and robustness of various ar-
chitectures trained with D-ReLU under white-box attacks, leveraging a training dataset
enriched with generated samples from the EDM. The fusion of D-ReLU with the EDM
showcases impressive results on both the CIFAR10 and CIFAR100 datasets, particularly
demonstrating significant efficacy when applied to deep architectures. Notably, the com-
bined approach of D-ReLU plus EDM exhibits remarkable performance and robustness;
especially noteworthy is how it outperforms instances where D-ReLU is employed without
the integration of the EDM.

Intriguingly, even at higher values of m, such as m = 100, the performance and
robustness metrics do not exhibit a notable decline as observed with the utilization of
D-ReLU in isolation, underscoring the added value and efficacy of incorporating EDM-
generated samples into the training set. This observation highlights the positive impact of
integrating EDM in the training process, particularly in enhancing the overall performance
and robustness of deep architectures across the CIFAR10 and CIFAR100 datasets. Such
findings provide valuable insights into the effectiveness of synergistic methods like D-ReLU
plus EDM in improving the learning capabilities and resilience of neural network models.

Tables 6 and 7 provide a comparative analysis between our approach using D-ReLU
and the TRADES method with generated samples from the EDM across the CIFAR10 and
CIFAR100 datasets, respectively. The tables also show the rankings for comparison. They
also provide a comparative analysis of our approach using D-ReLU with the TRADES
method with generated samples from the EDM across the CIFAR10 and CIFAR100 datasets.
When considering the CIFAR10 dataset, it is evident that D-ReLU generally surpasses
TRADES regarding the robustness of the models in a majority of the scenarios. The
exception lies in cases involving smaller network architectures such as Dense and Shallow
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CNNs, where TRADES demonstrates noticeably superior performance compared to D-
ReLU. In contrast, D-ReLU shows its strengths in deeper network architectures, where its
performance is on par with or even exceeds that of TRADE. This trend of comparative
performance is not isolated to the CIFAR10 dataset but is also observable in the results for
the CIFAR100 dataset.

(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 19. Accuracy of several types of networks on clean CIFAR10 and adversarial examples
when adding a dense layer with a D-ReLU function before the output layer and training them with
augmented data samples generated from the EDM.
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(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 20. Accuracy of several types of networks on clean CIFAR100 and adversarial examples
when adding a dense layer with a D-ReLU function before the output layer and training them with
augmented data samples generated from the EDM.

For deeper evaluations, the performance differential between D-ReLU and TRADES
across different network depths highlights the significance of choosing appropriate defen-
sive techniques depending on the complexity and depth of the employed models. Further
insights suggest that while TRADES tends to be more effective with simpler, less deep
networks, D-ReLU offers competitive advantages, primarily in more complex architectures.
This pattern suggests that the underlying mechanisms of D-ReLU might be better tuned
for managing the higher complexities and intricacies associated with deeper networks.
Hence, assessing the networks’ architecture becomes crucial when implementing robust
training methods, as the choice between D-ReLU and TRADES could significantly impact
the effectiveness of model robustness against adversarial attacks.
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Table 6. Accuracy metrics for multiple types of networks under various robust training schemes with
generated samples from the EDM, evaluating them on both clean samples and adversarial examples
generated by different white-box attacks on the CIFAR10 dataset. Note that the accuracy metrics in
bold are the highest in a specific model among the different training methods, and the numbers in
parentheses are the ranks for training methods under an architecture.

Model Training Clean FGSM PGD APGDCE APGDDLR CWL2
% % % % % %

Dense D-ReLU 48.47 (2) 46.87 (1) 48.03 (1) 45.57 (2) 45.83 (1) 47.33 (2)
TRADES 62.47 (1) 46.67 (2) 46.07 (2) 46.13 (1) 44.63 (2) 52.8 (1)

Shallow D-ReLU 67.97 (2) 66.57 (1) 67.07 (1) 65.4 (1) 65.4 (1) 66.97 (1)
CNN TRADES 74.3 (1) 59.03 (2) 57.93 (2) 57.93 (2) 56.53 (2) 63.6 (2)

ResNet50 D-ReLU 79.1 (2) 78.87 (1) 78.67 (1) 78.63 (1) 78.57 (1) 78.87 (1)
TRADES 80.6 (1) 66.77 (2) 65.97 (2) 65.5 (2) 64.03 (2) 70.2 (2)

ResNet101 D-ReLU 76.77 (2) 76.37 (1) 76.63 (1) 76.43 (1) 76.33 (1) 76.43 (1)
TRADES 77.97 (1) 63.43 (2) 61.93 (2) 61.87 (2) 59.77 (2) 67.33 (2)

MobilenetV2 D-ReLU 81.8 (1) 81.47 (1) 81.6 (1) 80.97 (1) 80.97 (1) 81.67 (1)
TRADES 79.33 (2) 62.27 (2) 61.1 (2) 60.67 (2) 58.4 (2) 66.87 (2)

InceptionV3 D-ReLU 87.4 (2) 86.77 (1) 86.23 (1) 86.4 (1) 86.33 (1) 86.9 (1)
TRADES 87.73 (1) 74.53 (2) 73.17 (2) 73.07 (2) 72.1 (2) 75.93 (2)

Table 7. Accuracy metrics for multiple types of networks under various robust training schemes with
generated samples from the EDM, evaluating them on both clean samples and adversarial examples
generated by different white-box attacks on the CIFAR100 dataset. Note that the accuracy metrics in
bold are the highest in a specific model among the different training methods, and the numbers in
parentheses are the ranks for training methods under an architecture.

Model Training Clean FGSM PGD APGDCE APGDDLR CWL2
% % % % % %

Dense D-ReLU 22.90 (2) 22.13 (2) 22.37 (2) 21.17 (2) 20.80 (2) 22.23 (2)
TRADES 36.03 (1) 23.93 (1) 23.57 (1) 23.47 (1) 22.13 (1) 26.97 (1)

Shallow D-ReLU 32.20 (2) 31.50 (1) 31.70 (1) 28.57 (2) 28.50 (1) 31.03 (2)
CNN TRADES 44.23 (1) 29.90 (2) 29.33 (2) 29.30 (1) 26.93 (2) 33.90 (1)

ResNet50 D-ReLU 53.83 (2) 52.8 (1) 53.03 (1) 52.13 (1) 52.50 (1) 52.77 (1)
TRADES 55.33 (1) 40.17 (2) 38.03 (2) 37.80 (2) 37.27 (2) 43.13 (2)

ResNet101 D-ReLU 44.50 (2) 43.90 (1) 44.60 (1) 43.47 (1) 43.50 (1) 44.20 (1)
TRADES 52.60 (1) 37.73 (2) 36.23 (2) 36.03 (2) 34.57 (2) 41.27 (2)

MobilenetV2 D-ReLU 56.57 (1) 55.57 (1) 55.77 (1) 54.67 (1) 54.87 (1) 55.70 (1)
TRADES 51.27 (2) 38.57 (2) 37.10 (2) 36.73 (2) 35.50 (2) 40.90 (2)

InceptionV3 D-ReLU 63.47 (1) 61.43 (1) 61.07 (1) 60.40 (1) 60.70 (1) 61.33 (1)
TRADES 62.90 (2) 48.33 (2) 46.5 (2) 46.23 (2) 45.67 (2) 49.43 (2)

The graphical representation provided in Figure 21 presents a detailed evaluation of
the outcomes derived from implementing D-ReLU in conjunction with the EDM on the
TinyImagenet dataset. Interestingly, the results indicate noticeable discrepancies in both
performance and robustness compared to scenarios where solely D-ReLU is deployed. This
inferior performance observed in the approach combining D-ReLU with the EDM can be
attributed to a crucial factor: the generated samples utilized for augmentation originate
from data points that are external to the test dataset.
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(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 21. Accuracy of several types of networks on clean TinyImagenet and adversarial examples
when adding a dense layer with a D-ReLU function before the output layer and training them with
augmented data samples generated from the EDM.

The discrepancy in results between the D-ReLU with EDM method and the standalone
D-ReLU approach on the TinyImagenet dataset underscores the significance of the source
of generated samples in the training process. By incorporating samples that do not align
closely with the original dataset, the model may encounter challenges in effectively gen-
eralizing and adapting to the unseen data during inference. This discrepancy highlights
the critical aspect of data-source relevance in the augmentation process, emphasizing the
importance of utilizing samples that are representative of the original dataset to ensure
optimal performance and robustness in model training.
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Table 8 presents a detailed comparison of the D-ReLU and TRADES training method-
ologies using samples generated from the EDM approach, particularly within the context
of the TinyImagenet dataset. Upon examining the results, it becomes noticeable that the
performance of D-ReLU in smaller network structures, such as Dense and Shallow CNNs, is
substantially deficient. When employing D-ReLU in these compact network configurations,
the results indicate a stark underperformance compared to its counterpart, TRADES, which
appears to better handle the constraints and demands posed by smaller neural networks.

Table 8. Accuracy metrics for multiple types of networks under various robust training schemes with
generated samples from the EDM, evaluating them on both clean samples and adversarial examples
generated by different white-box attacks on the TinyImagenet dataset. Note that the accuracy metrics
in bold are the highest in a specific model among the different training methods, and the numbers in
parentheses are the ranks for training methods under an architecture.

Model Training Clean FGSM PGD APGDCE APGDDLR CWL2
% % % % % %

Dense D-ReLU 1.3 (2) 1.27 (1) 1.37 (1) 1.3 (1) 1.3 (1) 1.27 (2)
TRADES 2.4 (1) 1.07 (2) 1.07 (2) 1.03 (2) 0.8 (2) 1.77 (1)

Shallow D-ReLU 1.87 (2) 1.77 (2) 1.77 (2) 1.5 (2) 1.53 (1) 1.8 (2)
CNN TRADES 7.33 (1) 1.97 (1) 1.87 (1) 1.87 (1) 1.13 (2) 4.6 (1)

ResNet50 D-ReLU 29.63 (1) 24.43 (1) 27.8 (1) 21.47 (1) 21.6 (1) 26.43 (1)
TRADES 8.63 (2) 4.13 (2) 3.7 (2) 3.57 (2) 2.9 (2) 5.97 (2)

ResNet101 D-ReLU 17.6 (1) 9.4 (1) 12.6 (1) 4.53 (1) 5.13 (1) 12.23 (1)
TRADES 7.3 (2) 3.63 (2) 3.37 (2) 3.33 (2) 2.87 (2) 5.2 (2)

MobilenetV2 D-ReLU 42.43 (1) 24.43 (1) 28.63 (1) 20.93 (1) 21.63 (1) 29.2 (1)
TRADES 18.13 (2) 8 (2) 7.03 (2) 6.63 (2) 5.2 (2) 12.63 (2)

InceptionV3 D-ReLU 35.63 (1) 10 (1) 9.73 (1) 3.33 (2) 4.33 (1) 16.9 (1)
TRADES 12.2 (2) 5.57 (2) 5.07 (2) 5 (1) 4.3 (2) 7.63 (2)

Conversely, in the context of more elaborate and deep network architectures, D-
ReLU demonstrates a marked superiority, substantially outperforming TRADES. This
significant enhancement in performance with deep networks suggests that D-ReLU is
particularly well suited to leverage the complex structures and layers involved in such
models, potentially exploiting deeper features and more intricate decision boundaries that
deeper architectures facilitate.

Figures 22–24 visualize the accuracy on the clean and adversarial samples under
several architectures on the CIFAR10, CIFAR100, and TinyImagenet datasets. These results
follow the same patterns as in the white-box attacks.

(a) Dense (b) Shallow CNN

Figure 22. Cont.
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(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 22. Accuracy of several types of networks on clean CIFAR10 and adversarial examples
generated by a black-box attack (i.e., square attack) when adding a dense layer with a D-ReLU
function before the output layer and training them with augmented data samples generated from
the EDM.

(a) Dense (b) Shallow CNN

Figure 23. Cont.
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(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 23. Accuracy of several types of networks on clean CIFAR100 and adversarial examples
generated by a black-box attack (i.e., square attack) when adding a dense layer with a D-ReLU
function before the output layer and training them with augmented data samples generated from
the EDM.

(a) Dense (b) Shallow CNN

Figure 24. Cont.
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(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 24. Accuracy of several types of networks on clean TinyImagenet and adversarial examples
generated by black-box attacks when adding a dense layer with a D-ReLU function before the output
layer and training them with augmented data samples generated from the EDM.

Table 9 presents a comparative analysis between the D-ReLU and TRADES methodolo-
gies, utilizing samples generated from the EDM approach while assessing the performance
under a black-box attack across three distinct datasets: CIFAR10, CIFAR100, and TinyIma-
genet. In smaller network configurations such as those typified by the Dense and Shallow
CNN architectures, the results observed under a black-box attack align closely with those
obtained under white-box attacks, indicating consistent behavior across different types
of adversarial attacks in these simpler network models. This consistency is crucial for
validating the robustness of training methodologies against varied adversarial strategies.

Expanding the evaluation to deeper network architectures, particularly within the CI-
FAR10 and CIFAR100 datasets, D-ReLU demonstrates commendable competitiveness with
TRADES. This indicates that D-ReLU can effectively leverage the complexities inherent in
larger and deeper models to enhance robustness against black-box attacks, thereby suggest-
ing its suitability in scenarios where maintaining integrity against external manipulations
in data is critical.

Interestingly, in the TinyImagenet dataset, which typically requires handling of a more
extensive and complex set of classes and image variations, D-ReLU not only competes
well but also noticeably outperforms TRADES. This superior performance underscores
D-ReLU’s potential advantage in more challenging and diverse datasets where the depth
and complexity of the network can be turned into a strategic asset to counter adversarial
attacks more effectively.
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Table 9. Accuracy for multiple types of networks under various robust training schemes with
generated samples from the EDM, evaluated on both clean samples and adversarial examples
generated by a black-box attack (i.e., square) on the CIFAR10, CIFAR100, and TinyImagenet datasets.
Note that the accuracy metrics in bold are the highest in a specific model among the different training
methods, and the numbers in parentheses are the ranks for training methods under an architecture.

Model Training
CIFAR10 CIFAR100 TinyImagenet

Clean Square Clean Square Clean Square
% % % % % %

Dense D-ReLU 52.6 (2) 48.77 (1) 22.9 (2) 12.4 (2) 1.3 (2) 0.7 (2)
TRADES 62.47 (1) 47.23 (2) 36.03 (1) 23.6 (1) 2.4 (1) 0.93 (1)

Shallow D-ReLU 67.97 (2) 52.17 (2) 35.3 (2) 14.43 (2) 2.67 (2) 0.5 (2)
CNN TRADES 74.3 (1) 60.9 (1) 44.23 (1) 31.2 (1) 7.33 (1) 3.13 (1)

ResNet50 D-ReLU 79.1 (2) 64.93 (2) 53.83 (2) 33.03 (2) 32.27 (1) 14.37 (1)
TRADES 80.6 (1) 67.9 (1) 55.33 (1) 40.07 (1) 7.33 (2) 4.7 (2)

ResNet101 D-ReLU 76.77 (2) 59.5 (2) 47.43 (2) 31.3 (2) 17.6 (1) 5.7 (1)
TRADES 77.97 (1) 64.53 (1) 52.6 (1) 37.97 (1) 7.3 (2) 3.87 (2)

MobilenetV2 D-ReLU 81.8 (1) 62.33 (2) 56.57 (1) 31.27 (2) 42.43 (1) 18.93 (1)
TRADES 79.33 (2) 64.53 (1) 51.27 (2) 37.97 (1) 18.13 (2) 9.9 (2)

InceptionV3 D-ReLU 87.4 (2) 74.73 (2) 63.47 (1) 42.37 (2) 35.63 (1) 14.93 (1)
TRADES 87.73 (1) 76.63 (1) 62.9 (2) 48.8 (1) 12.2 (2) 6.63 (2)

8.2. Discussion

In the context of the CIFAR10 and CIFAR100 datasets, the integration of generated
samples from the EDM approach appears to notably enhance the performance and ro-
bustness of both the D-ReLU and TRADES training methodologies. This improvement is
primarily due to the diversification of data samples provided by EDM, which broadens
the array of scenarios that the models encounter during training. Such enhanced variety
promotes better generalization capabilities within machine learning models, equipping
them to handle a wider range of inputs and reducing overfitting on the training data.

Furthermore, D-ReLU demonstrates a capacity to surpass TRADES in several state-
of-the-art (SOTA) networks deployed on these datasets. This superior performance of
D-ReLU suggests that its mechanisms might be more effectively aligned with the innate
characteristics and challenges presented by the CIFAR10 and CIFAR100 datasets when
combined with the enriched diversity of training instances generated through the EDM.

However, the scenario shifts quite dramatically when considering the TinyImagenet
dataset. Both D-ReLU and TRADES exhibit significantly diminished performance com-
pared to methodologies that do not employ EDM-generated samples. The core issue stems
from the EDM’s inability to produce new samples that accurately reflect the distribution
inherent to the test dataset of TinyImagenet. The discrepancy between the training data
augmented by the EDM and the actual data distribution encountered in testing hinders the
model’s ability to generalize effectively, resulting in poorer performance.

Despite these challenges with the TinyImagenet dataset, it is notable that D-ReLU still
maintains a considerable performance edge over TRADES. This indicates that while the
overall effectiveness of both methodologies is compromised by the limitations of the EDM
in this context, D-ReLU’s approach still manages to adapt more successfully than TRADES,
leveraging its strengths to achieve better results even under less-than-ideal conditions.

Such findings underscore the importance of contextual suitability of data augmen-
tation techniques like the EDM in training robust machine learning models. While the
EDM proves advantageous in datasets like CIFAR10 and CIFAR100 by enhancing model
generalization through diverse examples, its effectiveness is contingent upon the relevance
and fidelity of the generated samples to the test environments. Tailoring the choice of
augmentation strategies to the specific characteristics of the dataset is crucial in optimiz-
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ing model performance and robustness. This nuanced approach to training can signifi-
cantly influence the successful deployment of machine learning models across various
real-world applications.

9. Perturbation-BoundGeneralization

This section demonstrates how D-ReLU and other baseline methods perform across
various perturbation bounds. We choose APGE_CE as the adversarial attack in this experi-
ment because it is the most widely used and one of the strongest attacks.

9.1. Experimental Results

Figure 25 presents the accuracy of various approaches, including the baselines and
our proposed methods, on the CIFAR10 dataset under an APGD_CE attack with different
levels of perturbation. For a small network like Shallow CNN, our approaches, D-ReLU
and D-ReLU with the EDM outperform the other baselines under very small perturbations,
except TRADES-5 with the EDM. However, as the perturbation level increases, D-ReLU
and D-ReLU with the EDM consistently surpass all the baselines, demonstrating their
superior robustness.
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Figure 25. Accuracy of several approaches on the CIFAR10 dataset under an APGD_CE attack with
various perturbation bounds, where mReLU is D-ReLU.

Figures 26 and 27 depict similar results for the CIFAR100 and TinyImagenet datasets,
respectively. We observe a comparable trend to that of the CIFAR10 dataset, where D-ReLU
and D-ReLU with the EDM exhibit enhanced performance over the baselines. Although our
approaches show slightly diminished performance on larger datasets, they still generalize
well across different perturbation bounds. This consistency across varying perturbation
levels highlights our methods’ robustness and adaptability.
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Figure 26. Accuracy of several approaches on the CIFAR100 dataset under an APGD_CE attack with
various perturbation bounds, where mReLU is D-ReLU.
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Figure 27. Accuracy of several approaches on the TinyImagenet dataset under an APGD_CE attack
with various perturbation bounds, where mReLU is D-ReLU.
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9.2. Discussion

Our approaches, D-ReLU and D-ReLU with the EDM, demonstrate significant im-
provements in accuracy and robustness compared to baseline methods across different
datasets and perturbation levels. These results indicate the potential of our techniques to
enhance the reliability of machine learning models in adversarial settings, particularly in
image classification tasks. Our methods maintain high accuracy under small perturbations
and exhibit strong generalization capabilities as the perturbation bound increases, proving
their effectiveness in real-world applications where robustness is critical.

10. Limitations

Despite the successful results of D-ReLU, this activation function may be more difficult
than ReLU to harness because it has two hyperparameters. The first one is the balancer that
was tuned in our experiments. Noticeably, the best balancer in the CIFAR10 dense network
is different from the that in the CIFAR10 MobilenetV2 network. Therefore, it is tricky to
find the best balancer. Moreover, the second hyperparameter is the initial max value of
D-ReLU. We set it to 100 for the MNIST, CIFAR10, CIFAR100, and TinyImagenet datasets.
It is clear that the results of our approach on the TinyImagenet are not very satisfying due
to the large values before the D-ReLU layer, which cause several areas of zero gradients for
training. Therefore, in large datasets, we may need to set it to a higher value. However, the
results with an initial max value of 100 are satisfactory. It is noteworthy that if this value is
ridiculously high, the training time will significantly increase because the optimizer takes
much more time to reduce this max value.

11. Broader Impact

Our research is substantial, offering a transformative solution to the problem of
adversarial vulnerability in machine learning systems by customizing activation functions
within the model architecture. This enhancement in security was designed to be achieved
without significantly affecting the model’s performance on clean, non-adversarial samples.
This is a critical advantage for machine learning practitioners who need to ensure that the
pursuit of robustness does not come at the expense of efficiency and overall model accuracy.

The potential applications of this technology extend far beyond academic research; it
has practical, real-world implications across various sectors utilizing artificial intelligence.
Industries ranging from finance and healthcare to autonomous vehicle technology and
cybersecurity can greatly benefit from the integration of our findings into their AI devel-
opment cycles. By implementing our advanced techniques, these sectors can enhance the
reliability and security of their systems against adversarial attacks, safeguarding sensitive
data and critical operational functions.

Furthermore, our approach is expected to set a significant precedent for future research
and development in adversarial robustness. By providing a versatile framework that can
be adapted to diverse AI models and applications, our methodology promises to serve as a
strong baseline for ongoing efforts in the mitigation of adversarial examples. Researchers
and developers can leverage our proven strategies to explore further innovations in the
field, potentially leading to even more sophisticated defenses against increasingly complex
adversarial attacks.

Finally, the broader impacts of this research are multi-faceted, providing not only a
practical method for enhancing the adversarial robustness of machine learning models but
also contributing to the elevation of standards for the trustworthiness and security of AI
systems in industrial applications. This work supports the important goal of advancing
technology that is both powerful and resistant to evolving threats, thereby fostering a safer
and more reliable digital future.

12. Conclusions and Future Works

We introduced the D-ReLU function to overcome the gradient vanishing issue ob-
served with S-ReLU. We conducted various experiments demonstrating that D-ReLU
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enhances adversarial robustness in larger datasets than MNIST. The results indicate that
D-ReLU not only performed well but, in some instances, surpassed or matched the per-
formance of TRADES under both white-box and black-box attack scenarios. Our statis-
tical tests on the CIFAR10 dataset also show that D-ReLU significantly outperforms the
other baselines.

Moreover, even when testing with augmented samples from the EDM, D-ReLU con-
tinued to show superior performance or remained competitive with TRADES. Notably,
D-ReLU exhibited robust generalization across various perturbation bounds, a feature
that TRADES struggled with. Integrating D-ReLU into a machine learning model offers a
favorable balance between performance and robustness, making it a compelling option for
enhancing model resilience against adversarial attacks.

In the future, we plan to design and implement a series of controlled experiments
aimed at systematically evaluating how different initial maximum settings influence the
performance and robustness of machine learning models, especially when applied to large-
scale datasets. By manipulating this parameter, we aim to uncover deeper insights into how
subtle changes can improve or impair a model’s ability to withstand adversarial attacks,
thereby refining the robustness of the activation function.

The anticipated outcome of these future investigations is a more nuanced understand-
ing of the relationship between hyperparameters of the D-ReLU and the overall efficacy of
the model. This will not only contribute to the academic literature but also provide practical
guidelines that can be applied to enhance the security and reliability of machine learning
systems in real-world applications. Through rigorous experimentation and analysis, we
believe these efforts will pave the way for the development of more sophisticated, adaptive,
and resilient machine learning architectures.
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Appendix A. Proof of Theorem 1

Proof. Suppose that we have a feedforward network. ol
i denotes the output of neuron i in

layer l, and wl
ij is the parameter from neuron i in layer l to neuron j in layer l + 1. Then, the

output of neuron j in layer l with an activation function (denoted by act(·)) is

ol
j = act

(
∑

i
wl−1

ij · ol−1
i

)
.

When a previous layer has some perturbations (i.e., δl−1), the output is

ol∗
j = act

(
∑

i
wl−1

ij · (ol−1
i + δl−1

i )

)

= act

∑
i

wl−1
ij · ol−1

i︸ ︷︷ ︸
A

+∑
i

wl−1
ij · δl−1

i︸ ︷︷ ︸
B

,
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where o∗ means that the output has a perturbation induced by the previous layers.
Say that A = ∑i wl−1

ij · ol−1
i and B = ∑i wl−1

ij · δl−1
i . Then, ol

j = act(A), and ol∗
j =

act(A + B). Suppose that we would like to compare the differences between ol
j and ol∗

j of
ReLU and S-ReLU functions. Six cases can happen as follows:

• Case 1: A ≤ 0 and A + B > m → |ol
j − ol∗

j | = |0 − (B − A)| = |A − B| for ReLU and

|ol
j − ol∗

j | = |0 − m| = |m| for S-ReLU. The perturbations in the output of S-ReLU are
smaller than ReLU because m < |A + B| < |A − B|. The inequality is true, since A is
negative and B is positive due to the conditions.

• Case 2: 0 < A ≤ m and A + B > m → |ol
j − ol∗

j | = |A − (A + B)| = |B| for ReLU and

|ol
j − ol∗

j | = |A − m| = |A − m| for S-ReLU. The perturbations in the output of S-ReLU
are smaller than those of ReLU because B > m − A according to the conditions. Also,
since both B and m − A are positive due to the conditions, |B| > |A − m|.

• Case 3: A > m and A + B > m → |ol
j − ol∗

j | = |A − (A + B)| = |B| for ReLU and

|ol
j − ol∗

j | = |m − m| = 0 for S-ReLU. The perturbations in the output of S-ReLU are
smaller than that of ReLU because |B| > 0.

• Case 4: A > m and 0 < A + B ≤ m → |ol
j − ol∗

j | = |A − (A + B)| = |B| for ReLU and

|ol
j − ol∗

j | = |m − (A + B)| = |B + A − m| for S-ReLU. The perturbations in the output
of S-ReLU are smaller than ReLU because A − m is positive due to the conditions, and
B is negative. Then, B + A − m is greater than B. Thus, |B + A − m| is less than |B|.

• Case 5: A > m and A + B ≤ 0 → |ol
j − ol∗

j | = |A − 0| = |A| for ReLU and |ol
j − ol∗

j | =
|m − 0| = |m| for S-ReLU. The perturbations in the output of S-ReLU are smaller than
that of ReLU because one of the conditions is A > m. Then, |m| < |A|.

• Case 6: A ≤ m and A + B ≤ m → |ol
j − ol∗

j | for both ReLU and S-ReLU because
S-ReLU behaves the same as ReLU.

These results are summarized in Table A1 and show that the output of S-ReLU never
exceeds that of ReLU. Therefore, the theorem is valid.

Table A1. The difference between the outputs of a layer in a model on a clean sample and a sample
injected by small perturbations under possible conditions.

Conditions Output Difference
ReLU S-ReLU

A ≤ 0 and A + B > m |A − B| |m|
0 < A ≤ m and A + B > m |B| |A − m|

A > m and A + B > m |B| 0
A > m and 0 < A + B ≤ m |B| |B + A − m|

A > m and A + B ≤ 0 |A| |m|
A ≤ m and A + B ≤ m Same

Appendix B. Proof of Corollary 1

Proof. This corollary can be easily proven by the information in Table A1 summarized from
the proof of Theorem 1. When m decreases, S-ReLU’s |ol

j − ol∗
j | also decreases or remains the

same. For example, in case 3, suppose that m
′
< m. Therefore, |B + A − m

′ | < |B + A − m|
because B + A ≤ m and B + A ≤ m

′
according to the condition.
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