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The widespread use of deep learning models in critical fields such as healthcare

and autonomous transportation underlines the necessity for robust security against

adversarial examples — inputs deliberately modified to mislead models. Despite

superior performance in many tasks, these models are vulnerable to attacks that

compromise safety. Previous defense strategies, including adversarial training and

gradient masking, have proven either computationally intense or partially effective.

This research targets the susceptibility inherent in the ReLU activation functions,

proposing custom modifications intended to bolster model defense without affecting

performance. Our evaluations across various datasets indicate improved robustness,

showcasing the efficacy of these architectural enhancements in mitigating adversarial

vulnerabilities.



Hold for signature page



Copyright © 2025 by Korn Sooksatra

All rights reserved



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

ATTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

CHAPTER ONE
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Enhance the Robustness of Machine Learning Models
Without Significant Detriment to Accuracy . . . . . . . . 6

1.1.2 Augment the Robustness of State-of-the-Art Pre-Trained
Deep Learning Models for Safer Public Deployment . . . . 6

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Design and Implementation of Static-Max-Value ReLU (S-
ReLU) Function . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Design and Implementation of Dynamic-Max-Value ReLU
(D-ReLU) Function . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Framework for Evaluating and Comparing Traditional and
Modified Activation Functions . . . . . . . . . . . . . . . . 8

1.2.4 Practical Implications for Safe Deployment . . . . . . . . . 8

1.3 Overview of Remaining Chapters . . . . . . . . . . . . . . . . . . 9

CHAPTER TWO
Literature Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Existing Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Taxonomy of Adversarial Defenses . . . . . . . . . . . . . . . . . . 12

2.2.1 Detection-Based Techinque . . . . . . . . . . . . . . . . . 13

2.2.2 Training-Based Techinque . . . . . . . . . . . . . . . . . . 14

2.2.3 Architecture-Based Techinque . . . . . . . . . . . . . . . . 23

2.2.4 Preprocessing-Based Techinque . . . . . . . . . . . . . . . 26

2.2.5 Postprocessing-Based Techinque . . . . . . . . . . . . . . . 28

2.2.6 Combination-Based Techinque . . . . . . . . . . . . . . . . 29

2.2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iv



2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

CHAPTER THREE
Problem of ReLU Activation Functions . . . . . . . . . . . . . . . . . . . . 41

3.1 Enlarged Perturbations . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Capped ReLU Function . . . . . . . . . . . . . . . . . . . . . . . . 44

CHAPTER FOUR
Static-Max-ReLU Activation Functions . . . . . . . . . . . . . . . . . . . . 45

4.1 Theorectical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Effect of Capped Layer’s Size on Robustness . . . . . . . . . . . . 48

4.2.1 Experimental Explanation and Setting . . . . . . . . . . . 48

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Effect of Capped Layer’s Order on Robustness . . . . . . . . . . . 51

4.4 Zero Gradient Experiment . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Experiments with Attacks . . . . . . . . . . . . . . . . . . . . . . 55

4.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.2 Training Details . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.3 Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . 59

4.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.5 S-ReLU with Adversarial Training . . . . . . . . . . . . . 60

4.6 S-ReLU Classifier’s Sensitivity Map . . . . . . . . . . . . . . . . . 62

4.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

CHAPTER FIVE
Dynamic-Max-ReLU Activation Functions . . . . . . . . . . . . . . . . . . 65

5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.2 Training Details . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.3 Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . . 69

5.1.4 SOTA Methods for Robustness . . . . . . . . . . . . . . . 70

5.2 Whitebox-Attack Experiments . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Experimental Results for MNIST . . . . . . . . . . . . . . 71

5.2.2 Experimental Results for CIFAR10 . . . . . . . . . . . . . 73

5.2.3 Experimental Results for CIFAR100 . . . . . . . . . . . . 79

5.2.4 Experimental Results for TinyImagenet . . . . . . . . . . 80

5.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Blackbox-Attack Experiments . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Experimental Results for CIFAR10 . . . . . . . . . . . . . 86

5.3.2 Experimental Results for CIFAR100 . . . . . . . . . . . . 87

5.3.3 Experimental Results for TinyImagenet . . . . . . . . . . 87

v



5.3.4 Comparison to Other Baselines . . . . . . . . . . . . . . . 90

5.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Experiments with Augmented Dataset . . . . . . . . . . . . . . . 93

5.4.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . 94

5.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Perturbation Bound Generalization . . . . . . . . . . . . . . . . . 107

5.5.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . 107

5.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

CHAPTER SIX
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1 Intellectual Merit . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Broader Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.1 Development of S-ReLU . . . . . . . . . . . . . . . . . . . 116

6.3.2 Development of D-ReLU . . . . . . . . . . . . . . . . . . . 116

6.4 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . 118

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

APPENDIX A
Ranking Tables in Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 120

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

vi



LIST OF FIGURES

Figure 1.1 Adversarial example that misleads an image classifier to predict
this image as a cat. . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Figure 1.2 Denoised autoencoder for preprocessing an adversarial example to
create a clean/denoised sample. The solid line is the process with
the autoencoder, and the dashed line is the process without the
autoencoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.3 Randomized smoothing method where most predictions are picked
as the output. In this example, four noises are generated from the
noise generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.4 Adversarial example detection technique where the detected samples
are thrown away. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2.1 The occurrences and proportions of types of the approaches by each
year in our literature review . . . . . . . . . . . . . . . . . . . . . 34

Figure 2.2 The occurrences of datasets over the approaches in our literature
review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 2.3 The occurrences and proportions of datasets over the approaches
by each year in our literature review . . . . . . . . . . . . . . . . 37

Figure 3.1 The L∞ distance between each hidden layer’s outputs resulted from
passing clean samples and adversarial examples. . . . . . . . . . . 42

Figure 3.2 The L2 distance between each hidden layer’s outputs resulted from
passing clean samples and adversarial examples. . . . . . . . . . . 43

Figure 3.3 Accuracy achieved by classifiers with different capped hidden layers
and max values on MNIST test dataset. . . . . . . . . . . . . . . 43

Figure 4.1 Standard accuracy, robust accuracy, and success rate of a two-
hidden-layer classifier under a PGD attack across various maximum
perturbation values. Standard accuracy refers to the classifier’s
performance on clean samples, robust accuracy indicates its
performance on adversarial examples, and success rate is the
proportion of correctly classified clean samples that the attack
successfully converts into adversarial examples.. . . . . . . . . . . 50

vii



Figure 4.2 Standard accuracy, robust accuracy, and success rate of a reversed
two-hidden-layer classifier under a PGD attack across various
maximum perturbation values. Standard accuracy refers to the
classifier’s performance on clean samples, robust accuracy indicates
its performance on adversarial examples, and success rate is the
proportion of correctly classified clean samples that the attack
successfully converts into adversarial examples. . . . . . . . . . . 52

Figure 4.3 Standard accuracy, robust accuracy, and success rate of a equal
two-hidden-layer classifier under a PGD attack across various
maximum perturbation values. Standard accuracy refers to the
classifier’s performance on clean samples, robust accuracy indicates
its performance on adversarial examples, and success rate is the
proportion of correctly classified clean samples that the attack
successfully converts into adversarial examples. . . . . . . . . . . 53

Figure 4.4 Examples of success and failure scenarios for the zero-gradient
experiment where a blue arrow is a gradient direction in each step
of PGD attack, and the red dash arrow is the distance between
sample x to the zero-gradient location. . . . . . . . . . . . . . . . 55

Figure 4.5 Average distance to zero gradients by PGD attack on a range of
max values where the targets are general networks. . . . . . . . . 55

Figure 4.6 Average distance to zero-gradient areas by PGD attack on a range
of max values where the targets are reversed networks with the
MNIST dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.7 Average distance to zero gradients by PGD attack on a range of
max values where the targets are equal networks with the MNIST
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.8 Examples of the MNIST dataset . . . . . . . . . . . . . . . . . . . 58

Figure 4.9 Examples of the FMNIST dataset . . . . . . . . . . . . . . . . . . 58

Figure 4.10 Examples of the KMNIST dataset . . . . . . . . . . . . . . . . . . 58

Figure 4.11 Examples of the EMNIST dataset . . . . . . . . . . . . . . . . . . 58

Figure 4.12 Sensitivity map of digit five and the summation of the scores on
the top. Note that the more red pixel is, the more sensitive pixel
becomes. Also, the black pixel in the top left of the image is not
included in the map. We use it as a maximum reference value to
tune the value’s range across all the images. . . . . . . . . . . . . 63

Figure 5.1 Examples of the CIFAR10 dataset . . . . . . . . . . . . . . . . . . 68

viii



Figure 5.2 Examples of the CIFAR100 dataset . . . . . . . . . . . . . . . . . 68

Figure 5.3 Examples of the Tinyimagenet dataset . . . . . . . . . . . . . . . 68

Figure 5.4 Architecture of our approach by adding a layer (in red) with D-ReLU
before the output layer . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 5.5 Accuracy of two types of networks on clean MNIST and adversarial
examples when adding the dense layer with a D-ReLU function
before the output layer. . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 5.6 Accuracy of several types of networks on clean CIFAR10 and
adversarial examples when adding the dense layer with a D-ReLU
function before the output layer. . . . . . . . . . . . . . . . . . . 75

Figure 5.7 Accuracy of several types of CNNs on clean CIFAR10 and
adversarial examples when adding a convolutional layer with a
D-ReLU function after the input layer. . . . . . . . . . . . . . . . 77

Figure 5.8 Accuracy of several types of networks on clean CIFAR100 and
adversarial examples when adding the dense layer with a D-ReLU
function before the output layer. . . . . . . . . . . . . . . . . . . 81

Figure 5.9 Accuracy of several types of networks on clean TinyImagenet and
adversarial examples when adding the dense layer with a D-ReLU
function before the output layer. . . . . . . . . . . . . . . . . . . 82

Figure 5.10 Accuracy of several types of networks on clean CIFAR10 and
adversarial examples generated by a blackbox attack (i.e., square
attack) when adding the dense layer with a D-ReLU function before
the output layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 5.11 Accuracy of several types of networks on clean CIFAR100 and
adversarial examples generated by a blackbox attack (i.e., square
attack) when adding the dense layer with a D-ReLU function before
the output layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 5.12 Accuracy of several types of networks on clean Tinyimagenet and
adversarial examples generated by a blackbox attack (i.e., square
attack) when adding the dense layer with a D-ReLU function before
the output layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 5.13 Accuracy of several types of networks on clean CIFAR10 and
adversarial examples when adding the dense layer with a D-ReLU
function before the output layer and training them with augmented
data samples generated from EDM. . . . . . . . . . . . . . . . . . 96

ix



Figure 5.14 Accuracy of several types of networks on clean CIFAR100 and
adversarial examples when adding the dense layer with a D-ReLU
function before the output layer and training them with augmented
data samples generated from EDM. . . . . . . . . . . . . . . . . . 97

Figure 5.15 Accuracy of several types of networks on clean TinyImagenet and
adversarial examples when adding the dense layer with a D-ReLU
function before the output layer and training them with augmented
data samples generated from EDM. . . . . . . . . . . . . . . . . . 100

Figure 5.16 Accuracy of several types of networks on clean CIFAR10 and
adversarial examples generated by a blackbox attack (i.e., square
attack) when adding the dense layer with a D-ReLU function before
the output layer and training them with augmented data samples
generated from EDM. . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 5.17 Accuracy of several types of networks on clean CIFAR100 and
adversarial examples generated by a blackbox attack (i.e., square
attack) when adding the dense layer with a D-ReLU function before
the output layer and training them with augmented data samples
generated from EDM. . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 5.18 Accuracy of several types of networks on clean TinyImagenet and
adversarial examples generated by blackbox attacks when adding
the dense layer with a D-ReLU function before the output layer
and training them with augmented data samples generated from
EDM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 5.19 Accuracy of several approaches on the CIFAR10 dataset under the
APGD CE attack with various perturbation bounds where mReLU
is D-ReLU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 5.20 Accuracy of several approaches on the CIFAR100 dataset under the
APGD CE attack with various perturbation bounds where mReLU
is D-ReLU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Figure 5.21 Accuracy of several approaches on the TinyImagenet dataset under
the APGD CE attack with various perturbation bounds where
mReLU is D-ReLU. . . . . . . . . . . . . . . . . . . . . . . . . . . 110

x



LIST OF TABLES

Table 2.1 The techniques used by combination-based works . . . . . . . . . . 31

Table 4.1 The difference between the outputs of a layer in a model on a clean
sample and a sample injected by small perturbations under possible
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 4.2 Accuracy of MNIST, FMNIST, KMNIST and EMNIST two-hidden-
layer classifiers with general ReLU and S-ReLU activation functions
on clean test samples and adversarial test samples generated by using
FGSM and PGD with two perturbation bounds (i.e., ϵ). Also, the
average accuracy is provided. Note that the numbers in parentheses
are ranks of the models based on their accuracy in each dataset and
their averages are also provided. . . . . . . . . . . . . . . . . . . . 61

Table 4.3 Accuracy of MNIST two-hidden-layer classifiers with ReLU and S-
ReLU on clean test samples and adversarial test samples generated
by using FGSM, PGD and CW. . . . . . . . . . . . . . . . . . . . 62

Table 5.1 Accuracy metrics for dense networks and shallow CNNs under various
robust training schemes, evaluating on both clean samples and
adversarial examples generated by different attacks on the MNIST
dataset. Note that the accuracy metrics in bold are the highest in
a specific model among the different training methods. Note that
APCE is APGDCE, APDLR is APGDDLR, the accuracy metrics in
bold are the highest in a specific model among the different training
methods, the numbers in parenthesis are the ranks for training
methods under an architecture, TRADES-k means the TRADES
approach with β = k, and D-ReLU-k means the D-ReLU approach
with m = k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 5.2 Accuracy metrics for multiple types of networks under various robust
training schemes, evaluating on both clean samples and adversarial
examples generated by different adversarial attacks on the CIFAR10
dataset. Note that APCE is APGDCE, APDLR is APGDDLR, the
accuracy metrics in bold are the highest in a specific model among
the different training methods, TRADES-k means the TRADES
approach with β = k, and D-ReLU-k means the D-ReLU approach
with m = k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xi



Table 5.3 Accuracy metrics for multiple types of networks under various robust
training schemes, evaluating on both clean samples and adversarial
examples generated by different adversarial attacks on the CIFAR100
dataset. Note that APCE is APGDCE, APDLR is APGDDLR, the
accuracy metrics in bold are the highest in a specific model among
the different training methods, TRADES-k means the TRADES
approach with β = k, and D-ReLU-k means the D-ReLU approach
with m = k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Table 5.4 Accuracy metrics for multiple types of networks under various
robust training schemes, evaluating on both clean samples and
adversarial examples generated by different adversarial attacks on
the TinyImagenet dataset. Note that APCE is APGDCE, APDLR is
APGDDLR, the accuracy metrics in bold are the highest in a specific
model among the different training methods, TRADES-k means the
TRADES approach with β = k, and D-ReLU-k means the D-ReLU
approach with m = k. . . . . . . . . . . . . . . . . . . . . . . . . . 85

Table 5.5 Accuracy metrics for multiple types of networks under various robust
training schemes, evaluating on both clean samples and adversarial
examples generated by a blackbox attach (i.e. Square) on the
CIFAR10, CIFAR100 and TinyImagenet datasets. Note that the
accuracy metrics in bold are the highest in a specific model among
the different training methods. Note that TRADES-k means the
TRADES approach with β = k. . . . . . . . . . . . . . . . . . . . 92

Table 5.6 Accuracy metrics for multiple types of networks under various robust
training schemes with generated samples from EDM, evaluating on
both clean samples and adversarial examples generated by different
whitebox attacks on the CIFAR10 dataset. Note that the accuracy
metrics in bold are the highest in a specific model among the different
training methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 5.7 Accuracy metrics for multiple types of networks under various robust
training schemes with generated samples from EDM, evaluating on
both clean samples and adversarial examples generated by different
whitebox attacks on the CIFAR100 dataset. Note that the accuracy
metrics in bold are the highest in a specific model among the different
training methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 5.8 Accuracy metrics for multiple types of networks under various robust
training schemes with generated samples from EDM, evaluating on
both clean samples and adversarial examples generated by different
whitebox attacks on the TinyImagenet dataset. Note that the
accuracy metrics in bold are the highest in a specific model among
the different training methods. . . . . . . . . . . . . . . . . . . . . 101

xii



Table 5.9 Accuracy for multiple types of networks under various robust training
schemes with generated samples from EDM, evaluating on both clean
samples and adversarial examples generated by a blackbox attack (i.e.
Square) on the CIFAR10, CIFAR100 and TinyImagenet datasets.
Note that the accuracy metrics in bold are the highest in a specific
model among the different training methods. . . . . . . . . . . . . 105

Table A.1 Ranking based on the accuracy metrics for multiple types of networks
under various robust training schemes, evaluating on both clean
samples and adversarial examples generated by different attacks
on the CIFAR10 dataset. Note that APCE is APGDCE, APDLR is
APGDDLR, TRADES-k means the TRADES approach with β = k,
and D-ReLU-k means the D-ReLU approach with m = k. . . . . . 120

Table A.2 Ranking based on the accuracy metrics for multiple types of networks
under various robust training schemes, evaluating on both clean
samples and adversarial examples generated by different attacks on
the CIFAR100 dataset. Note that APCE is APGDCE, APDLR is
APGDDLR, the accuracy metrics in bold are the highest in a specific
model among the different training methods, TRADES-k means the
TRADES approach with β = k, and D-ReLU-k means the D-ReLU
approach with m = k. . . . . . . . . . . . . . . . . . . . . . . . . . 121

Table A.3 Ranking based on the accuracy metrics for multiple types of networks
under various robust training schemes, evaluating on both clean
samples and adversarial examples generated by different attacks on
the TinyImagenet dataset. Note that APCE is APGDCE, APDLR is
APGDDLR, the accuracy metrics in bold are the highest in a specific
model among the different training methods, TRADES-k means the
TRADES approach with β = k, and D-ReLU-k means the D-ReLU
approach with m = k. . . . . . . . . . . . . . . . . . . . . . . . . . 122

Table A.4 Ranking based on the accuracy metrics for multiple types of networks
under various robust training schemes, evaluating on both clean
samples and adversarial examples generated by a blackbox attach
(i.e. Square) on the CIFAR10, CIFAR100 and TinyImagenet datasets.
Note that Sq means the square attack, the accuracy metrics in bold
are the highest in a specific model among the different training
methods. Note that TRADES-k means the TRADES approach with
β = k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xiii



Table A.5 Ranking based on the accuracy metrics for multiple types of networks
under various robust training schemes with generated samples from
EDM, evaluating on both clean samples and adversarial examples
generated by different whitebox attacks on the CIFAR10 dataset.
Note that APCE is APGDCE, APDLR is APGDDLR, the accuracy
metrics in bold are the highest in a specific model among the different
training methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Table A.6 Ranking based on the accuracy metrics for multiple types of networks
under various robust training schemes with generated samples from
EDM, evaluating on both clean samples and adversarial examples
generated by different whitebox attacks on the CIFAR100 dataset.
Note that APCE is APGDCE, APDLR is APGDDLR, the accuracy
metrics in bold are the highest in a specific model among the different
training methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Table A.7 Ranking based on the accuracy metrics for multiple types of networks
under various robust training schemes with generated samples from
EDM, evaluating on both clean samples and adversarial examples
generated by different whitebox attacks on the TinyImagenet dataset.
Note that APCE is APGDCE, APDLR is APGDDLR, the accuracy
metrics in bold are the highest in a specific model among the different
training methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Table A.8 Ranking based on the accuracy metrics for multiple types of networks
under various robust training schemes with generated samples from
EDM, evaluating on both clean samples and adversarial examples
generated by a blackbox attack (i.e. Square) on the CIFAR10,
CIFAR100 and TinyImagenet datasets. Note that the accuracy
metrics in bold are the highest in a specific model among the different
training methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xiv



ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Dr. Pablo Rivas, for

his invaluable guidance, unwavering support, and mentorship throughout the duration

of this dissertation. His insights and advice have been instrumental in shaping both

the direction and success of this research. His dedication to excellence and scholarly

rigor have profoundly inspired and motivated me. I am also incredibly thankful to

Dr. Greg Hamerly for his advisory role at the initial stage of this dissertation. His

early contributions to the conceptual framework of this research were crucial and

have left a lasting impact on the final outcome. My heartfelt thanks extend to all the

members of my dissertation committee. In particular, I want to recognize Dr. Pablo

Rivas, Dr. Greg Hamerly, Dr. Mary Lauren Benton, and Dr. Liang Dong for their

valuable feedback, responsive engagement, and flexibility throughout the research

process. Their collective expertise and thoughtful criticism have been fundamental

to my developmental journey as a researcher. Additionally, I am indebted to my

labmates, including Bikram Khanal, Ernesto Quevedo Caballero, Maisha Binte Rashid,

Jorge Yero Salazar, Alejandro Rodriguez Perez, and many others. Sharing a lab space

with such talented individuals made it possible for me to conduct multiple important

experiments and provided a stimulating and enriching environment that was crucial

for my work. The collaboration, camaraderie, and shared curiosity amongst us have

made my research experience not only productive but also extraordinarily enjoyable.

I would also like to acknowledge the exceptional support from Sharon Humphrey,

Candace Ditsch, and Dr. Eunjee Song in the administrative and procedural aspects

related to graduation. Their guidance through the complexities of the graduation

process was indispensable, ensuring a smooth culmination to my doctoral studies.

Each of you has contributed to this journey in unique and significant ways, and for

xv



that, I am eternally grateful. Thank You for being a part of this pivotal chapter of

my academic life.

This work was partially supported by the National Science Foundation under Grant

2210091. The views expressed herein are solely those of the author and do not

necessarily reflect those of the National Science Foundation.

xvi



This dissertation is dedicated to my beloved wife, Pilaiporn Phetcherdchin, whose

unwavering support and encouragement have kept me motivated throughout this

journey, and to my wonderful parents, Somboon Sooksatra and Vannee Sooksatra, and

my loving grandmother, Uraiporn Pongwarin, whose steadfast support and belief in

my abilities have been the foundation of my educational success.

xvii



ATTRIBUTIONS

Chapter Three shows the limitations of ReLU activation functions, a problem

first identified by Dr. Greg Hamerly, who recognized their potential role in the

emergence of adversarial examples. Dr. Pablo Rivas provided a thorough review and

revision to prepare this chapter for publication.

Chapter Four presents the design and implementation of the S-ReLU activation

function, an enhancement of the ReLU function to improve adversarial robustness.

The zero gradient experiment, proposed by Dr. Greg Hamerly, was instrumental in

validating the effectiveness of S-ReLU. Dr. Pablo Rivas recommended evaluating

S-ReLU using MNIST-like datasets, as it is specifically suited for small-scale datasets.

Additionally, Dr. Rivas provided a comprehensive review and revision to prepare the

chapter for publication.

xviii



CHAPTER ONE

Introduction

Over the past few years, the adoption of deep machine learning models

across various sectors has significantly increased. This is attributed to their superior

performance in numerous tasks, some of which have outperformed human capabilities.

These tasks span from medical diagnosis to autonomous driving, where the accuracy

and reliability of machine learning predictions are crucial. In the context of autonomous

vehicles, for instance, the robustness of these systems is non-negotiable, as any failure

could potentially endanger lives.

However, deep learning models exhibit a critical vulnerability to adversarial

examples—subtle and deliberately engineered modifications to input data crafted

to mislead the model into making erroneous decisions. Figure 1.1 illustrates an

adversarial example that can fool an image classifier from predicting the image as

a dog to predicting the image as a cat. This susceptibility was first identified and

discussed in seminal papers (Szegedy et al., 2013; Goodfellow et al., 2014), highlighting

Dog with
confidence 77%

Noise computed
by adversary

0.001

Cat with
confidence 99%

Clean image Adversarial example

Figure 1.1. Adversarial example that misleads an image classifier to predict this image
as a cat.
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significant challenges in deploying these models in environments demanding high

security and reliability.

Addressing the vulnerabilities posed by adversarial examples has led to a

plethora of research endeavors (Goodfellow et al., 2014; Kurakin et al., 2016; Papernot

et al., 2016; Carlini and Wagner, 2017; Madry et al., 2017; Ilyas et al., 2018; Sooksatra

and Rivas, 2021). Among the proposed solutions, adversarial training has emerged as

a foremost strategy due to its relatively straightforward implementation and proven

effectiveness (Madry et al., 2017). This approach involves training the model on a

dataset supplemented with adversarially modified examples, thereby improving the

model’s resilience to similar attacks. However, the technique significantly extends the

training duration and computational demands.

Moreover, integrating auto-encoders and generative adversarial networks

(GANs) has been explored to preprocess and potentially cleanse adversarial per-

turbations from inputs (Meng and Chen, 2017; Samangouei et al., 2018). These

methods aim to improve the robustness of machine learning models by denoising or

altering the input data before the model processes it. Figure 1.2 demonstrates the

autoencoder method, which preprocesses an input to ensure that the classifier or target

model receives a clean input. This autoencoder has been specifically trained to denoise

adversarial examples, effectively reducing the impact of adversarial perturbations.

Figure 1.2. Denoised autoencoder for preprocessing an adversarial example to create
a clean/denoised sample. The solid line is the process with the autoencoder, and the
dashed line is the process without the autoencoder.
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However, these solutions necessitate additional model training and are challenged

by the complexity of handling large-scale data. The extra computational overhead

and the need for extensive training make these methods less feasible for real-time

applications and large datasets.

In addition, some strategies have focused on leveraging the outputs from

machine learning models to promote robustness. One notable approach is randomized

smoothing (Cohen et al., 2019), which involves injecting random noise, such as

Gaussian noise, into the input and generating multiple noisy versions of the input.

Each version is then passed through the machine learning model, and the final

prediction is determined by a majority vote among the predictions from the noisy

inputs. While randomized smoothing provides a form of certified robustness, it has

significant drawbacks. The method requires multiple passes through the model for

each prediction, which is computationally expensive and impractical for real-time

systems where quick responses are essential. Figure 1.3 illustrates the randomized

smoothing method. In this example, the system generates four predictions: three

predict the inputs as a dog, and one predicts it as a cat. Based on the majority vote,

the final output of the system is a dog.

Another method, defensive distillation, aims to reduce a model’s sensitivity to

input variations by training the model to output softened probabilities rather than

Noise Generator

+
+

+
+

Dog
Dog

Cat

Dog

Target Dog

Figure 1.3. Randomized smoothing method where most predictions are picked as the
output. In this example, four noises are generated from the noise generator.
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hard classifications (Papernot et al., 2016). Despite its initial promise, defensive

distillation is vulnerable to more sophisticated adversarial attacks, as demonstrated

by (Carlini and Wagner, 2016). This finding indicates that while defensive distillation

can provide some level of robustness, it is not a comprehensive solution and only offers

absolute protection against some types of adversarial techniques.

Many works have also attempted to create detectors for adversarial examples,

aiming to filter out adversarial inputs before they reach the machine learning model

(Wong and Kolter, 2018; Pang et al., 2018; Liu et al., 2019; Zhao et al., 2021; Nesti

et al., 2021; Li et al., 2024). These detectors can identify potentially malicious inputs

and prevent them from affecting the model’s predictions. However, these approaches

do not inherently improve the robustness of the underlying machine learning models.

Furthermore, some detector-based methods rely on additional machine learning models,

which can be vulnerable to adversarial attacks, allowing attackers to bypass the

detectors and compromise the target models. Figure 1.4 depicts this technique.

Samples detected as adversarial examples are ignored. Another drawback is that there

will be no input for the machine learning model if there are only adversarial examples

in the real world.

All the techniques above focus on preprocessing, post-processing, or augmenting

the inputs and outputs rather than directly modifying the models’ architectures.

NoAdversarial
Example?

Yes

TargetDetector Prediction

Figure 1.4. Adversarial example detection technique where the detected samples are
thrown away.
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However, the architecture of the models, mainly the activation functions, significantly

contributes to their vulnerability to adversarial examples. As illustrated in Figure 1.1,

these tiny perturbations are imperceptible to the human eye. Despite this, certain

activation functions, such as ReLU, enable these perturbations to amplify as they

propagate through the layers of machine learning models. Ultimately, this can lead to

changes in the output layer values, consequently affecting the final prediction.

While some research (Rakin et al., 2018; Qian and Wegman, 2018; Xie et al.,

2019; Sehwag et al., 2020; Wu et al., 2021; Chen et al., 2022; Bubeck et al., 2021;

Bubeck and Sellke, 2021) has aimed to customize the models’ architectures, only a

few works have specifically targeted the customization of activation functions. One

such effort by (Rakin et al., 2018) involved quantizing activation functions, which can

significantly reduce the precision of activations and potentially degrade the model’s

performance and robustness. Another example is the ReLU6 activation function used

in MobilenetV2 (Sandler et al., 2018), which caps the activation values at 6. Although

ReLU6 was introduced to improve robustness, more exploration of its potential must

be explored to enhance robustness against adversarial attacks.

Amidst these challenges, we observe a potential opportunity in the conventional

solutions—the activation functions within deep learning architectures, precisely the

ReLU function, which is known to contribute to vulnerabilities against adversarial

examples Goodfellow et al. (2014). A ReLU function is formulated as max(x, 0), where

x is an input, and max(·, ·) outputs the maximum value between two parameters. Our

research aims to directly address this by enhancing the design of ReLU functions to

improve model robustness without compromising accuracy.

1.1 Objectives

This dissertation aims to address the vulnerability of deep learning models to

adversarial examples by enhancing the robustness of activation functions. Specifically,
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we focus on refining the ReLU function to mitigate the effects of adversarial

perturbations. The objectives of this research are as follows:

1.1.1 Enhance the Robustness of Machine Learning Models Without Significant

Detriment to Accuracy

We propose customizing the ReLU activation function to minimize perturbation

effects and diminish gradients, thereby promoting a more secure model operation.

This customized function, the static-max-value ReLU (S-ReLU), is designed to resist

adversarial perturbations more effectively than the traditional ReLU. We will:

• Develop and formalize the S-ReLU function.

• Conduct a theoretical analysis comparing the extent of perturbation that can

pass through general ReLU and S-ReLU functions.

• Perform experiments on variants of the MNIST dataset (Deng, 2012) to

validate the practical effectiveness of S-ReLU in enhancing model robustness.

1.1.2 Augment the Robustness of State-of-the-Art Pre-Trained Deep Learning Models

for Safer Public Deployment

Building on the theoretical and empirical findings from the first objective,

we design a new customized ReLU function called the dynamic-max-value ReLU

(D-ReLU). This function is tailored to improve the robustness of models on larger

datasets. We will:

• Design the D-ReLU function to adapt dynamically to input data.

• Integrate D-ReLU into popular deep learning models, incorporating custom

ReLU modifications and additional dense layers where necessary.

• Conduct comprehensive experiments on larger datasets such as CIFAR-10,

CIFAR-100, and TinyImagenet to evaluate the practical capabilities and

robustness improvements D-ReLU offers.
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These objectives aim to develop and validate new activation functions that

enhance the security and reliability of deep learning models against adversarial attacks,

thereby contributing to safer deployment in critical applications.

1.2 Contributions

This dissertation makes several significant contributions to deep learning,

particularly in enhancing the robustness of machine learning models against adversarial

examples through refining activation functions. The key contributions are as follows:

1.2.1 Design and Implementation of Static-Max-Value ReLU (S-ReLU) Function

• Innovation in Activation Functions: We introduce the S-ReLU function, a novel

activation function designed to reduce the impact of adversarial perturbations

by customizing the ReLU function to minimize perturbation effects and

diminish gradients.

• Theoretical Analysis: We provide a comprehensive theoretical analysis

comparing the robustness of the traditional ReLU function with the S-ReLU

function, demonstrating how S-ReLU can more effectively limit the passage

of perturbations.

• Experimental Validation: We validate the effectiveness of S-ReLU through

extensive experiments on variants of the MNIST dataset, showcasing its ability

to enhance model robustness without significantly compromising accuracy.

1.2.2 Design and Implementation of Dynamic-Max-Value ReLU (D-ReLU) Function

• Advanced Activation Function Design: We design the D-ReLU function, an

advanced activation function that dynamically adjusts to input data, further

enhancing model robustness on larger and more complex datasets.

• Integration with Pre-Trained Models: We integrate D-ReLU into state-of-

the-art pre-trained deep learning models, demonstrating how custom ReLU
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modifications and additional dense layers can improve model security and

reliability.

• Comprehensive Experiments: We conduct a series of experiments on larger

datasets, including CIFAR-10, CIFAR-100, and TinyImageNet, to evaluate

the practical performance and robustness improvements provided by D-ReLU.

These experiments highlight D-ReLU’s potential for safer public deployment

of deep learning models.

1.2.3 Framework for Evaluating and Comparing Traditional and Modified Activation

Functions

• Evaluation Metrics: We establish a robust framework for evaluating the

effectiveness of different activation functions in mitigating adversarial attacks,

including theoretical and empirical metrics.

• Benchmarking Results: Our experimental results on various datasets and

machine learning models’ architectures serve as benchmarks for future research

in developing robust activation functions, clearly comparing the performance

and resilience of traditional and customized ReLU functions.

1.2.4 Practical Implications for Safe Deployment

• Guidelines for Model Deployment: Based on our findings, we propose practical

guidelines for deploying deep learning models in security-critical applications,

emphasizing the importance of robust activation functions in enhancing model

safety.

• Contributions to Model Robustness: Our research improves the robustness

and reliability of deep learning models, facilitating their adoption in fields

where security and accuracy are paramount.
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These contributions advance the understanding and application of activation

functions in deep learning, offering new avenues for research and practical solutions

for enhancing model robustness against adversarial threats.

1.3 Overview of Remaining Chapters

Chapter Two provides an in-depth review of existing literature on adversarial

attacks and their corresponding defense mechanisms. It begins by outlining and

examining previous studies and reviews of this emerging field. The chapter then

elaborates on the taxonomy of adversarial defense techniques, cataloging them

accordingly to help clarify the landscape of existing methodologies. Furthermore, it

explores the evolutionary trends of these techniques and the datasets that have been

predominantly utilized over the years. It provides a comprehensive understanding of

the historical and current state of research in adversarial machine learning.

Chapter Three discusses the vulnerabilities associated with ReLU functions

when facing adversarial examples. Through detailed experimentation and analysis, this

chapter illustrates the susceptibility of ReLU functions to such attacks, reinforcing the

arguments with empirical results. The experimental results are meticulously presented

to corroborate our hypothesis about the weakness of ReLU functions and provide a

solid foundation for exploring alternative solutions.

Chapter Four introduces a novel activation function named static-max-value

ReLU (S-ReLU) designed to mitigate some vulnerabilities identified in traditional

ReLU functions. This chapter begins with a theoretical analysis comparing the

levels of adversarial perturbations that networks can sustain using traditional ReLU

functions versus those employing S-ReLU. Following the theoretical analysis, a series

of experiments are conducted to evaluate the performance of S-ReLU. The results

of these experiments are discussed in detail, demonstrating improved adversarial

robustness and overall performance enhancements in neural network models utilizing

S-ReLU.
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Chapter Five explores another innovative activation function termed dynamic-

max-value ReLU (D-ReLU). This chapter introduces a novel loss function explicitly

designed for training models with D-ReLU and details the procedural methodology for

implementing such training. In addition, it presents a comparative analysis through

several experimental setups to benchmark the new D-ReLU against other baseline

approaches. The findings are extensively reviewed to underscore the advantages and

potential limitations of using D-ReLU in machine learning models.

Chapter Six serves as the concluding segment of this dissertation, summarizing

the essential findings and contributions of the research. It critically reflects on the work

undertaken and proposes potential avenues for future research to refine the D-ReLU

mechanism. The discussion focuses on enhancing the trainability and effectiveness of

D-ReLU further to improve machine learning models’ performance and adversarial

robustness. This chapter seeks to inspire ongoing and future research in secure and

robust artificial intelligence.
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CHAPTER TWO

Literature Reviews

This section examines the comprehensive survey and focuses on the multitude

of techniques utilized to enhance adversarial robustness in machine learning models.

Throughout our discussion, we emphasize the methodologies employed, dissecting

various strategies developed over the years to fend off or mitigate the effects of

adversarial attacks on systems.

We will analyze commonly used datasets and related techniques in this field.

Our review will trace the evolution of these datasets and defensive techniques over

the years. This historical perspective will highlight emerging trends, how approaches

have adapted to new adversarial tactics, and suggest future directions for adversarial

robustness research.

We aim to highlight key milestones in developing these techniques and assess the

effectiveness of various strategies in different contexts. By examining the progression

of approaches, we can identify pivotal advancements, evaluate the current state of

adversarial robustness techniques, and speculate on future research directions and

potential breakthroughs.

This exploration enhances our understanding of adversarial robustness and

serves as a guide for researchers and practitioners in selecting and implementing

appropriate defensive mechanisms for specific challenges in cybersecurity and machine

learning.

2.1 Existing Surveys

Chakraborty et al. (2018) laid the groundwork with a comprehensive survey

covering various types of attacks and defense mechanisms in adversarial learning.

They aimed to summarize recent findings and methodologies, providing practical
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examples and insights into defense strategies. Building upon this foundation, Ren

et al. (2020) expanded on categorizing attacks based on adversary knowledge and

discussed defensive techniques such as adversarial training. Concurrently, Ren et al.

(2021) went deeper into the exploration of adversarial examples, both in digital and

physical realms, while Bai et al. (2021) reviewed past adversarial training techniques.

Wang et al. (2022) addressed the issue of adversarial samples deceiving DNN

models, categorizing attacks and defenses. Similarly, Li et al. (2022) reviewed

adversarial attack and defense techniques with practical demonstrations. Focusing

on robust adversarial training, Qian et al. (2022) offered a systematic overview of

methodologies. Complementing these, Li et al. (2023) examined certifiably robust

defenses against evasion attacks, benchmarking existing methods. Vorobeychik (2023)

provided a broad overview of adversarial machine learning, highlighting its evolution.

Additionally, Li and Li (2024) discussed the balance between accuracy,

robustness, and fairness in machine learning models, exploring trade-offs. These surveys

collectively offer a comprehensive understanding of adversarial learning challenges and

advancements, guiding future research.

Building on this foundation, our review focuses specifically on defenses against

adversarial examples in convolutional neural networks (CNNs) for image classification.

Unlike broader surveys, we analyze the efficacy and limitations of defense mechanisms

tailored for CNNs, given their widespread use in image applications. By presenting a

taxonomy of defense strategies, we aim to provide actionable insights for researchers

and practitioners in computer vision and image processing. This analysis contributes

to enhancing the robustness and reliability of CNNs in real-world image classification

tasks.

2.2 Taxonomy of Adversarial Defenses

Numerous studies have focused on enhancing the robustness of machine learning

models. Our investigation revealed a variety of techniques aimed at achieving
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adversarial robustness. These techniques can be classified into five distinct categories,

each with its own unique approach: detection-based methods, training-based strategies,

architecture-based approaches, preprocessing-based techniques, postprocessing-based

solutions, and combination methods that leverage a mix of these approaches. By

breaking down these techniques into categories, we can better understand the diverse

range of options available for improving the resistance of machine learning models

against adversarial attacks.

2.2.1 Detection-Based Techinque

This technique detects adversarial examples before they are fed into a machine

learning model, whether with a machine-learning or non-machine-learning approach.

Wong and Kolter (2018) introduced a provably robust training approach, ensuring

classifier robustness through the construction of convex outer bound and efficient

optimization. This convex outer bound means that they transform a ReLU function

into a linear function by considering the lower and upper bounds because the ReLU

function is difficult to compute. This method guarantees robustness against norm-

bounded perturbations and provides insights into model performance and the ability

to detect adversarial examples at test time.

In contrast, Pang et al. (2018) proposed a non-maximal entropy metric combined

with a reverse classifier strategy to enhance robustness. The non-maximum entropy

can be computed by

−Σi ̸=ŷF̂ (x)ilog(F̂ (x)i),

where x is an input, F (x) is a classifier, F (x)i is the logit of class i, ŷ is the

predicted label, and F̂ (x)i =
F (x)i∑

j ̸=ŷ F (x)j
. By quantifying entropy in classifier outputs,

they effectively differentiate normal inputs from adversarial ones, concealing normal

examples in low-dimensional manifolds to thwart attacks. Similarly, Liu et al. (2019)

addressed adversarial attacks by leveraging steganalysis to identify deviations caused
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by perturbations, constructing feature-based detectors to discern adversarial examples.

These methods focus on leveraging domain-specific characteristics and detection

strategies to enhance robustness.

Furthermore, Zhao et al. (2021) designed attack cost-based detection ap-

proaches, considering the cost of attacks to differentiate between benign and adver-

sarial examples. Their K-NN and Z-Score based methods demonstrate effectiveness

and robustness in classification. Similarly, Nesti et al. (2021) proposed architectures

tailored to detect various types of adversarial examples. First, they employed the

baseline model to differentiate between a clean and an adversarial examples by altering

an image with a number of transformations and feeding them to a target. At the end,

if the KL divergence of the outputs of the target based on those images exceeded the

specified threshold, then the image is an adversarial example.

Lastly, Li et al. (2024) introduced a frequency domain analysis approach inspired

by adversarial perturbations, leveraging high-frequency signals and edge-based feature

extraction for effective detection. Collectively, these approaches contribute to ongoing

efforts in enhancing the robustness of machine learning models against adversarial

attacks by offering diverse detection strategies and insights into model vulnerabilities.

2.2.2 Training-Based Techinque

This particular technique involves adjusting the training process in order to

bolster the adversarial robustness of machine learning models. This modification can

be further subdivided into three distinct categories, each presenting its own set of

approaches and methodologies for improving the model’s resistance to adversarial

attacks. By going into these categories, we can gain a deeper understanding of how

subtle adjustments during the training phase can significantly enhance the robustness

of machine learning models in the face of potential adversarial threats.
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2.2.2.1 Retraining. The literature on retraining for adversarial robustness

encompasses various approaches, each contributing to the understanding and

enhancement of classifier resilience against adversarial attacks.

Goodfellow et al. (2014) pioneered adversarial training with the Fast Gradient

Sign Method (FGSM), demonstrating its efficacy in evaluating robustness by retraining

classifiers with adversarial examples generated using FGSM. FGSM was a one-step

method that could be computed by

x+ ϵ · sign(∇xl(F (x, θ), y)),

where x is an input, y is its ground truth label, F (x, θ) is a classifier, θ is the classfier’s

parameters, ϵ is the perturbation bound or a budget of an adversary, l(a, b) is a loss

function of predicted a with respect to the label b, and sign(·) is a function that

outputs the signs of its input. Building upon this, Madry et al. (2017) introduced

Projected Gradient Descent (PGD) as a stronger attack. PGD was a multi-step

method that was similar with FGSM and could be computed by

x+ η · sign(∇xl(F (x, θ), y)),

where η is a small step so that the attack could refine the adversarial slowly. Also,

this equation would be computed multiple times until it found an adversarial example

or exceeded its max iteration. The authors utilized this attack in their adversarial

training. The training’s goal was to solve this problem:

minθmaxδ∈Γl(F (x+ δ, θ), y),

where x is an input, y is the label, θ is the parameters of the target, F (x, θ) is the

target, δ is the adversarial perturbations, Γ is the perturbation bound, and l(F (x, θ), y)

is a loss function. In general speaking, this optimization problem tried to minimize

the worst possible case that could happen with the given perturbation bound Γ. The

inner maximization was substituted with an adversarial attack like FGSM or PGD.

Their work showcased the effectiveness of retraining classifiers with PGD-generated
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adversarial examples, enhancing robustness against not only L∞ attacks like FGSM

and PGD but also against L2 attacks.

Recognizing the limitations of adversarial training with examples from a single

classifier, Tramèr et al. (2018) proposed Ensemble Adversarial Training, advocating

for the use of adversarial examples from multiple classifiers to bolster robustness,

particularly against black-box attacks. Shafahi et al. (2019) introduced Natural

Gradient Adversarial Training, leveraging gradients from natural training to compute

adversarial perturbations, albeit requiring extensive training epochs to achieve

robustness comparable to PGD.

Tramer and Boneh (2019) delved into theoretical limits of adversarial robustness

within a natural statistical model, exploring trade-offs between robustness and accuracy

across various perturbation types. They proposed new adversarial training schemes

tailored to multi-perturbation risks. In contrast, Wong et al. (2020) demonstrated the

efficiency of FGSM alone in achieving robustness, suggesting potential optimizations

in adversarial training procedures.

Through categorization, it becomes evident how different approaches to

retraining for adversarial robustness have evolved, from specific attack methods

like FGSM and PGD to ensemble methods and considerations of theoretical limits.

Efficiency considerations, such as those presented by Wong et al. (2020), further

contribute to the optimization of adversarial training procedures.

2.2.2.2 Regularization. Recent advancements in regularization-based adver-

sarial robustness have explored various strategies to mitigate the accuracy-robustness

tradeoff in deep learning models.

Zhang et al. (2019) introduced TRADES, which splits the objective function

into two terms: one for accuracy and the other for robustness. The new objective

function is shown here:

d(F (x), y) + βd(F (x), F (x
′
)),

16



where d(F (x), y) is a distance function, which is generally the KL divergence, between

F (x) and y, x
′
is an adversarial example that can be found with PGD, and β is a

balancer between the performance and robustness. The goal is to minimize these

distances, and this approach enables finding a balance between accuracy (the first

part) and robustness (the second part) during training.

Similarly, Wang et al. (2019) improved classifier robustness by emphasizing

misclassified training samples during adversarial training. Their method led to a more

robust classifier compared to traditional adversarial training approaches.

Moreover, Gui et al. (2019) presented Adversarially Trained Model Compression

(ATMC), integrating adversarial training with model compression techniques such

as pruning and quantization. ATMC enhances both the robustness and efficiency of

deep neural networks by minimizing the worst-case adversarial loss while satisfying

constraints on model sparsity and quantization precision.

Another approach is the incorporation of a local linearity regularizer (LLR)

into adversarial training, as proposed by Qin et al. (2019). This regularizer has been

proved in the work to be the upperbound of the loss function caused by adversarial

examples. Their empirical analysis showed that networks trained with LLR exhibited

improved robustness, especially on datasets like ImageNet.

Furthermore, Alayrac et al. (2019) introduced Unsupervised Adversarial

Training (UAT) to effectively utilize unlabeled data for training robust classifiers. By

combining supervised and unsupervised losses, UAT bridges the gap between natural

and adversarial generalization, leading to improved adversarial robustness.

Additionally, Rade and Moosavi-Dezfooli (2021) proposed Helper-based

Adversarial Training (HAT) to prevent excessive margin rise along initial adversarial

directions. By introducing helper examples during training, HAT achieved improved

performance on clean samples compared to traditional adversarial training methods.

17



Similarly, Zhang et al. (2021) introduced Geometry-Aware Instance-Reweighted

Adversarial Training (GAIRAT), leveraging limited model capacity efficiently by fitting

important data while ignoring unimportant ones based on their robustness against

adversarial attacks and geometric distance from the decision boundary.

Moreover, Pang et al. (2022) proposed Self-COnsistent Robust Error (SCORE)

to reconcile the trade-off between adversarial robustness and clean accuracy. SCORE

encourages model predictions to align with the data distribution while maintaining

robust optimization principles.

In addressing catastrophic overfitting, Jia et al. (2022) introduced FGSM-

PGI, a prior-guided initialization strategy to mitigate it. By incorporating historical

adversarial knowledge into the initialization process, FGSM-PGI effectively improved

model robustness against adversarial attacks.

Dong et al. (2023) proposed Universal Inverse Adversarial Training (UIAT) to

bridge the gap between adversarial examples and the high-likelihood region of their

respective classes for robustness enhancement. UIAT leverages inverse adversarial

examples to achieve this goal efficiently.

Moreover, He et al. (2023) introduced Self-Paced Adversarial Training (SPAT),

a structured approach that explicitly guides the learning process from easy to complex

adversarial examples, enhancing model robustness and generalization.

In exploring fairness in robustness, Ali Mousavi et al. (2023) introduced Fair

Adversarial Retraining (FARMUR), aiming to achieve high robustness and fairness

simultaneously by identifying vulnerable and robust data sub-partitions and applying

fair adversarial retraining accordingly.

Additionally, Atsague et al. (2023) focused on minimizing both natural and

adversarial risks through Penalized Modified Huber Regularization for Adversarial

Training (PMHRAT), which strikes a balance between natural and adversarial accuracy

while mitigating the impact of adversarial attacks on model performance.
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Furthermore, Liu et al. (2023) proposed AdvMACER to enhance the robustness

of randomized smoothed classifiers by maximizing the certified radius of adversarial

examples. AdvMACER achieved significant improvements in model robustness and

performance across various datasets.

Suzuki et al. (2023) introduced ARREST to mitigate the accuracy-robustness

tradeoff in deep neural networks (DNNs) through adversarial finetuning, representation-

guided knowledge distillation, and noisy replay. ARREST demonstrated improvements

in both accuracy and robustness of trained DNNs.

Lastly, Cui et al. (2023) introduced the Improved Kullback-Leibler (IKL)

Divergence loss to enhance stability and mitigate biases in adversarial training

tasks. Their proposed approach effectively improved model robustness, particularly in

adversarial training tasks.

Incorporating the latest addition, Park et al. (2024) proposed Adversarial

Feature Alignment (AFA) as a new robust training method for deep neural network

feature extractors. AFA effectively balanced robustness and accuracy by aligning

features with the correct class manifold, achieving improvements in model performance.

These approaches collectively contribute to advancing the field of adversarial robustness

training by offering a diverse set of techniques to address the challenges posed by

adversarial attacks.

2.2.2.3 Augmentation. The literature on augmentation-based adversarial

robustness highlights diverse approaches and strategies employed to enhance robustness

in machine learning models.

Rebuffi et al. (2021) proposed heuristics-driven augmentations as a strategy to

mitigate robust overfitting without relying on external data. Their study found that

techniques like Cutout or MixUp, when combined with early stopping, attenuated

robust overfitting and led to a slower decline in robust accuracy compared to classical

adversarial training. MixUp, in particular, demonstrated an ability to preserve robust
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accuracy even at lower levels compared to other methods like Pad & Crop. Furthermore,

the exploration of additional augmentation techniques such as CutMix revealed that

it yielded higher ”best” robust accuracy and was less prone to robust overfitting.

In contrast, Gowal et al. (2021) introduced an approach to enhance adversarial

robustness through the utilization of low-quality generated data. By leveraging

generated samples, particularly from a class-conditional Gaussian fit of the training

data, they bolstered robustness in classification tasks. The study emphasized the

importance of sample diversity and its complementarity with the original training set

in enhancing robustness.

Moreover, Li and Spratling (2023) delved into understanding how the hardness

and diversity of data augmentation influenced robust overfitting in adversarial training.

Their findings led to the proposal of the Improved Diversity and Balanced Hardness

(IDBH) augmentation scheme, aiming to mitigate robust overfitting by enhancing

diversity and balancing hardness.

Similarly, Wang et al. (2023) focused on leveraging data generated by diffusion

models, particularly the elucidating diffusion model (EDM), to enhance adversarial

training without external datasets. This approach eliminated robust overfitting and

reduced the generalization gap between clean and robust accuracy, presenting a

promising direction for improving adversarial training effectiveness.

Furthermore, Yang et al. (2023) addressed defending against transfer-based

black-box attacks through Data-centric Robust Learning (DRL). This method aimed

to generate an augmented dataset for training models robust against adversarial

examples, combining adversarial data augmentation and data selection strategies

optimized for Cross-Entropy (CE) loss. Additionally, XDRL combined DRL with

common techniques like synthetic data augmentation and alignment regularization

loss functions to enhance robustness against black-box attacks.
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These studies collectively contribute to advancing the understanding and

effectiveness of augmentation-based methods in bolstering adversarial robustness in

machine learning models. They explore various techniques, from heuristics-driven

augmentations to the utilization of generated data and defense against black-box

attacks, offering insights into the delicate balance between accuracy and robustness in

adversarial training.

2.2.2.4 Other Techniques. Certain pieces of literature do not fit neatly within

the previously outlined techniques, hence have been grouped in this section for an

extended discussion and analysis. The work by Rice et al. (2020) explored the efficacy

of early stopping to mitigate robust overfitting in adversarial training, showing that it

can maintain optimal robust performance and prevent degradation. Similarly, Wang

et al. (2023) explored approaches to address the Label-Feature Distribution Mismatch

problem by deploying new adversarial training techniques, involving regularizing the

distribution of adversarial examples to enhance robustness.

In a novel strategy to defend against adversarial attacks, Amich and Eshete

(2021) presented Morphence, a method that transforms models into moving targets.

By continuously renewing a pool of student models based on prediction confidence, it

diversifies model predictions and enhances overall robustness in dynamic environments.

Complementing this dynamic approach, Doan et al. (2022) combined adversarial

training with Bayesian inference to represent uncertainty in parameters more accurately,

aiming for a universal defense strategy across various learning contexts.

Several researchers focused on optimizing adversarial training to further push

its limits in enhancing machine learning security. Yang et al. (2023) proposed

novel optimization strategies that unify global and pairwise perturbation approaches,

employing SVRG-based algorithms to manage computational difficulties. In contrast,

Nuhu et al. (2023) introduced a two-phase method involving the DeepRobust
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framework and strategic adversarial training to specifically enhance model resilience

by distinguishing between weak and robust samples.

Innovating beyond traditional frameworks, Guan et al. (2023) suggested

conducting training in the logit space rather than the input space using Endogenous

Adversarial Examples (EAEs), aiming to enhance robustness while potentially

streamlining the training process. In parallel, Gong et al. (2023) looked at improving

training efficiency via gradient approximation techniques, employing partial Taylor

series to approximate adversarial losses and simplify the training process.

Tao (2023) introduced the Meta-Adv framework to incorporate adversarial

training within a meta-learning architecture, facilitating rapid adaption to new tasks

while bolstering adversarial robustness. Similarly, Wang et al. (2023) suggested Robust

Mode Connectivity (RMC) to minimize the maximum loss across various perturbations

and select robust models along the connectivity path.

Focused on exploring the detailed dynamics of model robustness, Zhang et al.

(2023) developed the ADVMOE framework, targeting enhanced robustness of MoE-

CNN by considering interactions between router and pathway resilience. From a

technical viewpoint, Kanai et al. (2023) tackled the nonsmooth nature of adversarial

losses by introducing the Ensemble Stochastic Gradient Descent (EnSGD), promising

robust training for neural networks under adversarial conditions.

Finally, Khan et al. (2023) have been advancing multi-prototype adversarial

training by incorporating metric learning, illustrating a principled method to bolster

performance and resilience of deep learning models in challenging applications.

Together, these approaches substantially contribute to developing a more robust

and secure machine learning ecosystem, paving the way for the safe deployment of AI

systems in varied real-world scenarios.
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2.2.3 Architecture-Based Techinque

This section discusses the various studies and methodologies that have focused

on adjusting the architectures of machine learning models to enhance their ability to

withstand adversarial attacks. By exploring the modifications made to the structural

design of these models, we gain insights into the innovative approaches and techniques

employed to bolster their robustness in the face of potential adversarial challenges.

This detailed examination allows us to better understand the nuanced strategies

utilized in adapting the architectures of machine learning models to prioritize and

enhance adversarial robustness, ultimately contributing to the broader discussion on

the resilience of these models in real-world applications.

Rakin et al. (2018) proposed a novel approach to enhance adversarial robustness

by quantizing activation functions within classifiers. First, they showed the fixed

quantization that quantized an activation function into a number of bits. For example,

they quantized a sigmoid function with this:

1

2n − 1
× round[(2n − 1)× y],

where n is the number of bits, round[·] is a round function to make a float number of

an integer, and y is the ouput of a sigmoid function. The work also described how to

do the same thing for a tanh function. However, they did not mention how to quantize

a ReLU function.

Next, the authors made the thresholds of the previous method tunable by an

optimizer and called it the dynamic quantization. At the end, the performance and

robustness of the dynamic quantization were better than the fixed quantization.

Qian and Wegman (2018) introduced techniques to construct L2-nonexpansive

neural networks (L2NNNs), focusing on weight handling and activation function

behavior to maintain crucial distance properties for robust performance. L2NNNs

were based on the idea that the output of a layer should not expand greater than its
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input as in:

yTy ≤ xTx,

where x is an input and y is an output. From this inequality and y = Wx where W

was parameters of a layer, they derived it to

xT (W TW )x ≤ xTx

Therefore, minimizing W TW was a goal for L2NNNs to improve a model’s robustness.

Meanwhile, Xie et al. (2019) addressed the vulnerability of convolutional

networks to adversarial attacks by introducing feature denoising blocks, effectively

mitigating perturbation amplification and improving adversarial robustness. These

methods collectively highlight diverse strategies, ranging from activation quantization

to feature denoising, aimed at bolstering adversarial robustness in neural networks.

Moreover, Sehwag et al. (2020) proposed a pruning approach based on empirical

risk minimization (ERM) to make compact networks robust, identifying robust sub-

networks while maintaining targeted accuracy metrics. Contrary to conventional

expectations, Wu et al. (2021) found that wider models exhibited worse robust

regularization effects, emphasizing the importance of considering perturbation stability

in assessing robustness, thus linking model width to robustness. Additionally, Chen

et al. (2022) outlined a novel approach to improving adversarial robustness through

the integration of dropout techniques with the drift-diffusion model (DDM), enhancing

model resilience against adversarial attacks through stochasticity.

In the domain of neural network architecture, Sooksatra et al. (2021) explored

the enhancement of classical CNN performance through Quanvolutional Neural

Networks (QNNs), demonstrating a novel approach to improving CNN robustness.

Bubeck et al. (2021) examined the relationship between model size and robustness,

proposing conjectures regarding neural network interpolation and robustness, while

Bubeck and Sellke (2021) analyzed the probability of fixed functions providing
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good approximate fits to random data, reaffirming the law of robustness. These

studies collectively shed light on fundamental properties of neural networks and their

robustness.

Furthermore, Zhang et al. (2021) and Zhang et al. (2022) presented innovative

strategies for enhancing neural network robustness against adversarial attacks in

the L∞-norm domain, emphasizing the construction of inherently robust operations.

Huang et al. (2021) explored the relationship between DNN architectural configuration,

Lipschitzness, and adversarial robustness, providing insights into optimizing network

architectures for enhanced robustness. Meanwhile, Peng et al. (2023) compared CNNs

and Transformers to explore robust architectural components, offering specific design

choices to enhance adversarial robustness.

Sooksatra et al. (2023) investigated the efficacy of capped ReLU functions in

managing the amplification of adversarial perturbations, introducing caps on ReLU

functions to control perturbation growth. Meanwhile, Huang et al. (2023) decomposed

and studied the architectural design of adversarially robust residual networks, providing

insights into designing robust residual blocks and optimizing network architectures for

enhanced adversarial robustness. These studies further enrich the understanding of

techniques aimed at improving neural network resilience against adversarial attacks.

Finally, Weitzner and Giryes (2023) analyzed the vulnerability of sparse coding

algorithms to adversarial perturbations, drawing parallels with feature pruning in

neural networks, while Lukasik et al. (2023) explored frequency domain analysis in

CNNs, offering insights into utilizing frequency information for enhanced adversarial

robustness. Additionally, Chitsaz et al. (2023) proposed Weight Clipping-Aware

Training (WCAT) to mitigate quantization errors and enhance network robustness,

and Yu et al. (2023) focused on universal adversarial patch attacks, proposing the

Feature Norm Suppressing (FNS) approach to enhance CNN robustness. Finally, Ma

et al. (2024) investigated the incorporation of random weights to enhance adversarial
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robustness, while Wu et al. (2024) proposed the RSA algorithm for robustness

enhancement by refining feature activations, suppressing redundant activations,

and aligning feature spaces. These diverse methodologies collectively contribute

to advancing the field of architecture-based adversarial robustness in neural networks.

2.2.4 Preprocessing-Based Techinque

This section explains a variety of methodologies and techniques focused on

preprocessing images before inputting them into machine learning models, aimed

at mitigating the presence of any potential adversarial perturbations. By carefully

manipulating and refining the images prior to their utilization in the model, researchers

and practitioners seek to minimize the risk of adversarial attacks by bolstering the

model’s ability to accurately interpret and classify visual data. This multifaceted

process involves an array of preprocessing steps and strategies designed to enhance

the robustness and resilience of the models, ultimately ensuring their efficacy and

reliability in successfully handling image-based tasks. Through a comprehensive

exploration of these preprocessing approaches, we gain valuable insights into the

intricate methodologies employed to safeguard machine learning models against

adversarial threats, contributing to advancements in the field of image recognition

and classification.

Samangouei et al. (2018) introduced Defense-GAN, leveraging a Wasserstein

Generative Adversarial Network (WGAN) trained on clean samples to denoise

adversarial examples. This algorithm projected images onto the generator’s range,

minimizing reconstruction error to substantially reduce adversarial noise. Serving as a

pre-processing step, Defense-GAN combated both white-box and black-box attacks

without altering the classifier structure. Its non-linear nature and gradient descent

loop during inference rendered it robust against gradient-based attacks. Interestingly,

Defense-GAN theoretically maintained classifier performance without necessitating

re-training if the GAN adequately represented the data.
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Li et al. (2019) proposed the Certified Robust Classifier framework, ensuring

certified robustness by bounding the tolerable size of attacks. Gaussian noise added

to adversarial examples nullified perturbation effects before classification. The

algorithm iteratively added Gaussian noise to pixels, estimating output distribution to

calculate attack size bounds. Theoretical analyses demonstrated its certified robustness.

Connecting robustness to adversarial and random noise, Stability Training with Noise

(STN) improved adversarial robustness by enhancing robustness to random noise. Yang

et al. (2019) introduced Matrix Extension Net (ME-Net), enhancing robustness by

leveraging matrix estimation techniques. Random pixel masking destroyed adversarial

structures, followed by ME-based reconstruction. ME-Net’s efficacy in enhancing

robustness was supported by empirical analyses revealing strong global structures

inherent in images.

Bai et al. (2019) proposed PixelDefend, purifying images using PixelCNN,

decomposing image likelihood into conditional distributions over pixels. The raster

scan order limitation led to Hilbert-based PixelDefend (HPD), utilizing Hilbert curves

to better capture pixel dependencies. HPD’s theoretical guarantee of finding optimal

clean images and ensemble version, EHPD, enhanced defense performance through

pattern ensembling. Kabilan et al. (2021) introduced VectorDefense, employing

Potrace vectorization to eliminate adversarial artifacts while retaining class-specific

features. Binarization, despeckling, and smoothing components purified adversarial

examples, enhancing classifier robustness.

Alfarra et al. (2022) added an anti-adversary layer to pretrained models,

impeding adversaries by moving inputs away from decision boundaries. Unlike random

perturbations, this layer boosted confidence in predictions without compromising

clean accuracy. Mandal (2023) employed a U-shaped convolutional autoencoder to

reconstruct original inputs from adversarial images, eliminating perturbations. GELU

activation layers addressed the dying ReLU problem, facilitating effective learning.

27



Chen et al. (2023) explored distribution transfer for defense, utilizing diffusion models

to enhance model performance on out-of-distribution samples.

Lyu et al. (2023) neutralized adversarial perturbations while preserving image

structure using pixel masking and MAE reconstruction. Uniform masking and

reconstruction schemes effectively mitigated adversarial noise, enhancing defense

performance. Shah et al. (2024) proposed R-Blur to simulate human peripheral vision

decline, incorporating biological principles into image processing for a more realistic

representation.

2.2.5 Postprocessing-Based Techinque

This method involves manipulating the results produced by machine learning

models to increase their resistance to adversarial attacks. It concentrates on improving

post-processing procedures, executing remedial actions, or adding extra defensive

layers to lessen the effects of adversarial threats. Various studies have utilized this

strategy to enhance adversarial robustness. By carefully evaluating and enhancing the

outputs, these methods aim to strengthen the models against potential weaknesses,

ensuring they continue to perform well and reliably, even when faced with adversarial

disturbances. The objective is to create more robust models that can endure complex

attacks, thus boosting the overall security and durability of machine learning systems.

Papernot et al. (2016) introduced defensive distillation to mitigate vulnerabili-

ties in deep neural networks (DNNs) against adversarial samples, employing distillation

to enhance DNN robustness. The adaptation of distillation involved training two net-

works with the same architecture but different labels, leveraging additional knowledge

encoded in probability vectors to improve generalization and resilience to adversarial

perturbations.

Cohen et al. (2019) proposed randomized smoothing for constructing a smoothed

classifier from a base classifier, providing robustness guarantees within a certain radius

around the input against adversarial attacks. Meanwhile, Kang et al. (2021) proposed
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the SODEF model architecture for classification tasks, incorporating a feature extractor,

a neural ODE layer, and a fully connected (FC) layer to enforce stability against

perturbations.

Additionally, Liu et al. (2023) introduced EsbRs to improve model robustness

through mixed-model ensembles, showcasing advancements in ensemble studies.

Furthermore, Vorácek and Hein (2023) utilized randomized smoothing to enhance

L1-certified robustness in binary and multiclass classification tasks, extending the

method to incorporate box constraints for tighter upper bounds on minimal possible

overlap.

Finally, Bai et al. (2023) proposed adaptive smoothing to reconcile the trade-

off between accuracy and robustness in neural classifiers, achieving interpretable

adjustment between the two at inference time, while Bai et al. (2024) introduced

MixedNUTS, a training-free method optimizing the accuracy-robustness trade-off

through nonlinear transformations of logits. These approaches collectively contribute

to advancing the field of adversarial robustness in neural networks through post-

processing step.

2.2.6 Combination-Based Techinque

Several research efforts have explored the integration of the aforementioned

techniques to bolster adversarial robustness in machine learning models. By combining

different strategies, these works aim to create a synergistic effect that enhances the

overall defense mechanism against adversarial attacks. For instance, some works have

combined defensive distillation with input preprocessing techniques to further harden

the model’s resistance to adversarial inputs. These comprehensive approaches not only

address specific vulnerabilities but also provide a more holistic defense framework.

By uniting various methodologies, researchers have been able to achieve significant

improvements in the robustness and reliability of machine learning models, ensuring

they can better withstand the evolving nature of adversarial threats.
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Xu et al. (2017) proposed feature squeezing as a method to mitigate adversarial

attacks on image classification models by reducing color depth and employing spatial

smoothing. This approach aimed to decrease pixel variability and enhance classifier

robustness, as demonstrated through evaluations on datasets like MNIST, CIFAR-

10, and ImageNet. Furthermore, the detection method employed in this approach,

comparing model predictions on original and squeezed samples, shared a common goal

with the defense mechanism proposed by Meng and Chen (2017). MagNet, introduced

by Meng and Chen (2017), aimed to identify and mitigate adversarial examples using

a detector and a reformer. This system leveraged diversity in defense mechanisms to

enhance effectiveness, similar to the multi-method approach of feature squeezing.

Meanwhile, Naseer et al. (2020) aimed to combine adversarial training and

input processing methods into a single framework for improved robustness and clean

image accuracy. The Neural Representation Purifier (NRP) model introduced in

this framework shared a similar goal with MagNet’s reformer component, aiming

to reconstruct inputs to resemble normal examples and thereby enhance classifier

robustness. Additionally, the exploration of activation function properties and their

impact on adversarial training by Xie et al. (2020) provided insights into how different

training techniques could affect model robustness.

Further insights into adversarial training techniques were provided by Gowal

et al. (2020), who systematically explored factors affecting adversarial robustness.

Their findings shed light on the importance of various factors such as model capacity,

activation function choice, and handling of unlabeled data. These insights were

complementary to the exploration of activation function curvature’s role in adversarial

training effectiveness by Singla et al. (2021), which challenged previous assumptions

about the necessity of smooth activations for regularization effects.

Moreover, Qian et al. (2022) introduced a mechanism to guide the search

for more robust network architectures by analyzing feature distortion in adversarial
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examples. This approach aligned with the goals of Naseer et al. (2020) and Gowal et al.

(2020) in enhancing model robustness. Additionally, Dai et al. (2022) investigated the

impact of activation function shape on robust accuracy, providing insights that could

inform the design of more robust networks.

Furthermore, defense techniques such as Adversarial Training on Purification

(AToP) proposed by Lin et al. (2023) and the use of random projection filters by

Dong and Xu (2023) offered additional strategies to enhance model robustness. These

techniques focused on destructing adversarial perturbations and preserving distances

among data points to improve the network’s ability to defend against attacks.

Finally, Iijima et al. (2024), proposing a random ensemble method, and Huang

et al. (2024), proposing a denoising defense approach, addressed the challenge of

achieving robustness against various adversarial examples while maintaining high

classification accuracy on clean images. These works provided innovative solutions to

this challenge, highlighting the importance of addressing adversarial vulnerabilities

from multiple perspectives.

Table 2.1. The techniques used by combination-based works

Approach Detect Train Arch Pre Post

(Xu et al., 2017) ✓ ✓
(Meng and Chen, 2017) ✓ ✓
(Naseer et al., 2020) ✓ ✓
(Xie et al., 2020) ✓ ✓

(Gowal et al., 2020) ✓ ✓
(Singla et al., 2021) ✓ ✓
(Qian et al., 2022) ✓ ✓
(Dai et al., 2022) ✓ ✓
(Lin et al., 2023) ✓ ✓

(Dong and Xu, 2023) ✓ ✓
(Iijima et al., 2024) ✓ ✓ ✓
(Huang et al., 2024) ✓ ✓
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Table 2.1 provides a comprehensive overview of the techniques utilized in

combination-based approaches for enhancing adversarial robustness. Each work

employs different combinations of these techniques to achieve robust adversarial

defenses.

Several notable patterns emerge from this data. Two works, Xu et al. (2017)

and Meng and Chen (2017), utilized both detection and preprocessing techniques. This

combination focuses on identifying adversarial examples before they reach the model

and modifying the input data to mitigate adversarial effects. In contrast, works such

as Naseer et al. (2020), Lin et al. (2023), and Huang et al. (2024) combined training

techniques with preprocessing. This approach leverages robust training procedures

and prepares data in a way that enhances model resilience.

A significant number of works paired training with architecture-based tech-

niques. This combination involves modifying the model’s structure and applying

robust training methods to strengthen defenses against adversarial attacks. Uniquely,

(Iijima et al., 2024) combined architecture-based, preprocessing, and postprocessing

techniques. This comprehensive approach modifies the model architecture, prepares

data for enhanced robustness, and applies post-processing methods to further refine

model predictions and reduce adversarial impact.

Table 2.1 highlights that training techniques are the most commonly used

method, appearing in 10 out of the 12 works. This trend suggests that training methods

are viewed as foundational to improving adversarial robustness. Their frequent use

may be due to their direct impact on model performance and the flexibility they offer

in combination with other techniques. Architecture-based techniques are the second

most common, used in 7 out of 12 works. This indicates a strong focus on modifying

the internal structure of models to make them more resistant to adversarial attacks.

The popularity of these techniques reflects the importance of building robustness

directly into the model architecture.
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Preprocessing methods are also widely used, appearing in 6 out of the 12

works. These methods are often combined with training and architecture-based

techniques, underscoring the importance of preparing input data to withstand

adversarial manipulations. In contrast, detection techniques are used in only 2

works, while postprocessing is used in just 1 work. This suggests that while detection

is important, it may be less favored compared to more proactive approaches like

training and preprocessing. Postprocessing, being the least used, might be considered

less effective or more supplementary in nature.

These trends and patterns imply several important directions for future research.

The trend towards combining multiple techniques indicates a recognition of the

complex nature of adversarial threats. Future research may continue to explore

integrative approaches that combine the strengths of various methods to develop

more comprehensive defenses. Additionally, the limited use of postprocessing and

detection techniques suggests potential areas for innovation. Researchers might focus

on developing more effective detection algorithms and postprocessing methods that

can complement existing approaches.

As training techniques often increase computational costs, there is an implicit

need for developing more efficient and scalable solutions. This could drive research

towards optimizing existing techniques or creating novel methods that balance

robustness with computational efficiency. The diverse combinations of techniques

also imply potential benefits from interdisciplinary collaboration. Insights from fields

such as computer vision, data preprocessing, and cybersecurity can be integrated to

enhance the robustness of machine learning models.

Table 2.1 not only highlights the prevalent techniques in combination-based

adversarial robustness works but also points to important trends and future directions

in the field. The dominance of training and architecture-based techniques, along with
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the rising use of preprocessing methods, reflects the ongoing efforts to develop robust

and resilient models against adversarial attacks.

2.2.7 Discussion

(a) Occurences

(b) Proportions

Figure 2.1. The occurrences and proportions of types of the approaches by each year
in our literature review
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We discussed the approaches for each technique in the previous sections. This

section demonstrates the trend of the growth of works in adversarial robustness. Figure

2.1 illustrates the number of works and the number of works in each technique per

year since 2014. As seen in the figure, the number of works in adversarial robustness

has grown rapidly from 2014 to 2024, with a particularly notable increase in the use

of training techniques. This technique has gained popularity because it is both highly

effective and straightforward to implement. However, it is important to note that the

training time for these techniques has significantly increased.

Consequently, the adoption of other techniques has also risen over the past years.

For instance, Figure 2.1b presents the normalized version of Figure 2.1a, revealing a

substantial proportion of works based on architecture-based and preprocessing-based

techniques. This diversification in techniques suggests a response to the limitations

and challenges posed by training-based methods, such as the increased computational

costs.

Overall, these figures not only demonstrate the active and evolving nature of

research in adversarial robustness but also imply several important trends and shifts

in the field. The initial dominance of training techniques points to their early success

and ease of application. However, as the field has matured, researchers have explored

and increasingly adopted a wider array of methods, indicating a recognition of the

need for more efficient or complementary approaches.

Furthermore, the rise in architecture-based and preprocessing-based techniques

implies a broader understanding and approach to adversarial robustness. These

methods can offer benefits such as reduced training times and potentially greater

generalizability. The growing diversity in research approaches may also reflect an

interdisciplinary collaboration, where insights from different domains are integrated

to enhance the robustness of machine learning models.
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The figures highlight not only the growth in the number of works but also

the evolution and diversification of techniques in adversarial robustness. This trend

suggests that the research community is actively seeking more effective and efficient

ways to combat adversarial attacks, leading to a more comprehensive and nuanced

understanding of the field.

2.3 Datasets

Figure 2.2. The occurrences of datasets over the approaches in our literature review

This section discusses the datasets used in adversarial robustness approaches.

Figure 2.2 presents the frequency occurrences used in these works. The most frequently

utilized datasets include CIFAR10 (Krizhevsky et al., 2009), MNIST (Deng, 2012),

CIFAR100 (Krizhevsky et al., 2009), Imagenet (Russakovsky et al., 2015), SVHN (Net-

zer et al., 2011), TinyImagenet (Chrabaszcz et al., 2017), and FMNIST (Xiao et al.,

2017a).
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(a) Occurences

(b) Proportions

Figure 2.3. The occurrences and proportions of datasets over the approaches by each
year in our literature review

Figure 2.3 shows the frequency of the top 6 most frequent-used datasets utilized

in the literature. Between 2014 and 2018, MNIST and CIFAR10 were particularly

popular. These datasets are relatively small, making them suitable for early research

in adversarial robustness, which often involves extensive training time. The simplicity
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and size of these datasets allowed researchers to quickly test and iterate on their

approaches without the computational burden of larger datasets.

After 2018, there was a noticeable shift towards using larger datasets such as

CIFAR100, TinyImagenet, and Imagenet. This shift likely reflects the maturation of

the field and the increased attention it has garnered from various institutions. As

adversarial robustness research has progressed, there has been a greater emphasis on

demonstrating the effectiveness of techniques on more complex and diverse datasets.

This trend suggests that researchers are moving towards more realistic and challenging

scenarios, ensuring that their methods can scale and perform well on large-scale data

typically encountered in practical applications.

The implications of these trends are significant. Initially, the reliance on smaller

datasets like MNIST and CIFAR10 enabled rapid advancements and the development

of foundational techniques in adversarial robustness. These early stages were crucial for

understanding the fundamental challenges and creating initial solutions. However, the

eventual shift to larger datasets indicates a push towards more robust and generalizable

methods that can handle the complexities of real-world data.

This evolution also implies a growing computational capability within the

research community. The increased use of large datasets like Imagenet, which requires

substantial computational resources, suggests that institutions are investing more in

this area, providing the necessary infrastructure to support such resource-intensive

research. Additionally, it reflects a confidence in the scalability of new techniques and

their applicability to more demanding tasks.

Moreover, the diversity in dataset use highlights the importance of evaluating

adversarial robustness across various types of data. By incorporating datasets with

different characteristics—such as the digit-focused MNIST, the object-centric CIFAR

series, and the complex, high-resolution images of Imagenet—researchers can ensure

that their methods are versatile and effective across a wide range of scenarios. This
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comprehensive evaluation is crucial for developing universally robust models that can

withstand adversarial attacks in different contexts.

The data also implies a possible future trend where new datasets might

emerge as benchmarks for adversarial robustness, driven by evolving research needs

and technological advancements. As the field continues to grow, the diversity and

complexity of datasets will likely expand, fostering the development of even more

sophisticated and resilient models.

The figures illustrate not only the growth in the number of works but

also the evolution and diversification of datasets used in adversarial robustness

research. This trend towards larger and more varied datasets implies a maturing field

focused on developing more generalizable and scalable solutions, backed by increasing

computational resources and institutional support.

2.4 Conclusion

Building upon the insightful analysis presented in the earlier sections of this

document, it is clear that architectural-based techniques dealing with adversarial

robustness have seen a noticeable growth over the years. Despite this evident

advancement, there appears to be a notable gap in the experimental exploration

of capping activation functions, such as ReLU functions. To the best of our knowledge,

our research is pioneering in this area by being the first to rigorously experiment with

and investigate the potential and implications of applying caps to such activation

functions within machine learning models. This venture into uncharted territory is

intended to provide insights that could drive further enhancements in model robustness

against adversarial attacks.

Furthermore, our comparative analysis of various datasets utilized in the field

of adversarial machine learning reveals a strong preference towards certain datasets.

Among these, the MNIST, CIFAR10, CIFAR100, TinyImagenet, and Imagenet datasets

stand out as particularly popular due to their diverse and challenging nature, which
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makes them suitable for testing the robustness of machine learning models under

adversarial conditions. Our experimental design, therefore, includes these well-regarded

datasets to ensure that our findings are relevant and comparable to existing studies.

However, we have decided to exclude the Imagenet dataset from our experiments.

The decision stems from practical constraints; notably, the sheer size of the Imagenet

dataset poses significant resource challenges. It requires an extensive amount of

computational power and time for training and testing models, which are beyond our

current capabilities.

Incorporating these popular datasets, barring Imagenet, allows us to engage

with the broader discourse in this area while managing our resources effectively. By

focusing on architectures and activation functions, particularly exploring the novel

area of capping functions like ReLU, our work aims to contribute valuable knowledge

to the field of adversarial robustness. Through this approach, we hope to uncover

findings that could spur further research and innovation, particularly in developing

more secure and resilient machine learning systems that can withstand increasingly

sophisticated adversarial attacks.

40



CHAPTER THREE

Problem of ReLU Activation Functions

This chapter has been published as: Sooksatra, Korn, et al. “Is relu adversarially robust?”
LXAI Workshop at the Fortieth International Conference on Machine Learning, 2023.

https://doi.org/10.52591/lxai202307232

ReLU activation functions have been widely used in deep-learning models

due to their ability to accelerate the training process and address the vanishing

gradient problem. Unlike Sigmoid and Tanh activation functions, ReLU activation

functions have many spaces for gradient computation, making them more friendly

to backpropagation. However, this property that makes ReLU functions worthwhile

makes them weak in deep-learning models regarding adversarial examples. Given

that ReLU functions allow many tiny perturbations in inputs to be enlarged over the

hidden layers by the operations in the models, these tiny perturbations can result in a

significant difference in the output layer, making the model vulnerable to adversarial

examples.

3.1 Enlarged Perturbations

This section1 shows the benefit of capping the ReLU functions. Inspired by

ReLU6 in (Sandler et al., 2018), we found that capping ReLU activation functions can

stop the perturbations from growing over the layers in our subsequent experiments

that show the growing perturbations in the hidden layers for various max values.

We use the MNIST dataset (LeCun et al., 2010) and train its classifier consisting of

three dense hidden layers whose sizes are 392, 196, and 98. After that, we utilize

Projected Gradient Descent (PGD) attack on the classifier and the test dataset with

the perturbation bound of 20/256, step size of 2/256 and the max iteration of 20.

1The main difference between the published version and this chapter is that, here, we rewrite
the first two sentences of the first paragraph and separate the figure used in this section into two
figures to improve readability.
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Then, we obtain adversarial examples. Next, we train other classifiers and cap different

hidden layers (i.e., the first hidden layer (HL1), the second hidden layer (HL2), the

third hidden layer (HL3) and all the hidden layers (HL123)). Also, we cap them with

diverse max values (i.e., 0.01, 0.1, 1, 10, and 100). Figure 3.1 and 3.2 demonstrate

that ReLU functions with high max values allow perturbations to become huge over

the layers. On the other hand, capping them with low values can mitigate such an

effect. Further, it is intuitive that the difference significantly goes down at the layer

capped, as seen in the figure.
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(a) Cap the first hidden layer with the infinite
norm distance.
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(b) Cap the second hidden layer with the
infinite norm distance.
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(c) Cap the third hidden layer with the
infinite norm distance.
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(d) Cap all the hidden layers with the infinite
norm distance.

Figure 3.1. The L∞ distance between each hidden layer’s outputs resulted from passing
clean samples and adversarial examples.
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(a) Cap the first hidden layer with the two
norm distance.
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(b) Cap the second hidden layer with the two
norm distance.
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(c) Cap the third hidden layer with the two
norm distance.
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(d) Cap all the hidden layers with the two
norm distance.

Figure 3.2. The L2 distance between each hidden layer’s outputs resulted from passing
clean samples and adversarial examples.
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Figure 3.3. Accuracy achieved by classifiers with different capped hidden layers and
max values on MNIST test dataset.

Although capping ReLU functions reduces the growth of perturbed values that

may significantly alter the output, we found that when we set the max value to be very
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low, the classifier would underfit the dataset due to the vanishing gradient problem,

as demonstrated in Figure 3.3. Also, capping all the hidden layers achieved a slightly

lower performance than capping only one hidden layer, as seen in the figure when the

max value is 0.1. Therefore, there is a tradeoff between the network’s ability to be

trained and its sensitivity to tiny perturbations in this phenomenon.

3.2 Capped ReLU Function

We established that capping ReLU functions could significantly reduce the

perturbations over the layers in the previous section. Therefore, this section shows

the formal definition of the capped ReLU function.

A capped ReLU function is a general ReLU function capped with a value.

Hence, we can formulate this function as

max(0,min(z,m)), (3.1)

where z is the function’s input and m is a max value that caps the function. As seen

in Figure 3.2a where m is the capping value (i.e., 0.01, 0.1, 1 and 10), reducing m can

control the growing perturbations efficiently.

Sigmoid and Tanh activation functions can be good candidates for providing

adversarial robustness since their values have the highest and lowest values. However,

the output spaces of these functions are still too wide (i.e., from 0 to 1 for Sigmoid

and from -1 to 1 for Tanh). As seen in Figure 3.1 and 3.2, the ReLU functions with

the capping value of 1 cannot prevent the growth of perturbations over the hidden

layers. Therefore, these functions are not robust enough against adversarial examples.
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CHAPTER FOUR

Static-Max-ReLU Activation Functions

This chapter has been published as: Sooksatra, Korn, et al. “Is relu adversarially robust?”
LXAI Workshop at the Fortieth International Conference on Machine Learning, 2023.

https://doi.org/10.52591/lxai202307232

The previous chapter introduces a method to enhance adversarial robustness

in machine learning models by capping ReLU functions with maximum values, thus

mitigating the impact of enlarged perturbations. This novel activation function is

termed the static-max-value ReLU function (S-ReLU) and is defined as follows:

S-ReLU(x,m) = max(0,min(m,x)),

where x represents the incoming input, and m is a predefined maximum value.

Theoretical analyses will be presented to demonstrate the enhanced robustness of

this proposed function compared to a general ReLU function. Furthermore, empirical

experiments will be detailed in the subsequent sections to validate its improved

robustness empirically.

4.1 Theorectical Analysis

We previously introduced S-ReLU. Next, we aim to theoretically demonstrate

how S-ReLU can neutralize adversarial perturbations at each layer in this section.1

Theorem 4.1.1. The outputs of S-ReLU functions always have fewer perturbations

than or equal perturbations to the outputs of ReLU functions, given the same inputs.

Proof. Suppose that we have a feedforward network. oli denotes the output of neuron

i in layer l, and wl
ij is the parameter from neuron i in layer l to neuron j in layer l+1.

Then, the output of neuron j in layer l with an activation function (denoted by act(·))

1The material in this section does not appear in any of our current publications.
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is

olj = act

(∑
i

wl−1
ij · ol−1

i

)
. (4.1)

When a previous layer has some perturbations (i.e., δl−1), the output is

ol
∗

j = act

(∑
i

wl−1
ij · (ol−1

i + δl−1
i )

)

= act

∑
i

wl−1
ij · ol−1

i︸ ︷︷ ︸
A

+
∑
i

wl−1
ij · δl−1

i︸ ︷︷ ︸
B

 ,

(4.2)

where o∗ means that the output has perturbation induced by the previous layers.

Say that A =
∑

iw
l−1
ij · ol−1

i and B =
∑

i w
l−1
ij · δl−1

i . Then, olj = act (A), and

ol
∗
j = act (A+B). Suppose that we would like to compare the differences between

olj and ol
∗
j of ReLU and S-ReLU functions. There are six cases that can happen as

follows:

• Case 1: A ≤ 0 and A+B > m → |olj−ol
∗
j | = |0−(B−A)| = |A−B| for ReLU

and |olj − ol
∗
j | = |0−m| = |m| for S-ReLU. The perturbations in the output

of S-ReLU are smaller than ReLU because m < |A + B| < |A − B|. The

inequality is true since A is negative and B is positive due to the conditions.

• Case 2: 0 < A ≤ m and A+ B > m → |olj − ol
∗
j | = |A− (A+ B)| = |B| for

ReLU and |olj − ol
∗
j | = |A−m| = |A−m| for S-ReLU. The perturbations in

the output of S-ReLU are smaller than ReLU because B > m− A from the

conditions. Also, since both B and m− A are positive due to the conditions,

|B| > |A−m|.

• Case 3: A > m and A+B > m → |olj − ol
∗
j | = |A− (A+B)| = |B| for ReLU

and |olj − ol
∗
j | = |m−m| = 0 for S-ReLU. The perturbations in the output of

S-ReLU are smaller than ReLU because |B| > 0.

• Case 4: A > m and 0 < A + B ≤ m → |olj − ol
∗
j | = |A − (A + B)| = |B|

for ReLU and |olj − ol
∗
j | = |m − (A + B)| = |B + A − m| for S-ReLU. The
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perturbations in the output of S-ReLU are smaller than ReLU because A−m

is positive due to the conditions, and B is negative. Then, B + A − m is

greater than B. Thus, |B + A−m| is less than |B|.

• Case 5: A > m and A + B ≤ 0 → |olj − ol
∗
j | = |A − 0| = |A| for ReLU and

|olj − ol
∗
j | = |m − 0| = |m| for S-ReLU. The perturbations in the output of

S-ReLU are smaller than ReLU because one of the conditions is A > m. Then,

|m| < |A|.

• Case 6: A ≤ m and A+B ≤ m → |olj − ol
∗
j | of both ReLU and S-ReLU are

the same because S-ReLU behaves the same as ReLU.

These results are summarized in Table 4.1 and show that the output of S-ReLU

will never exceed the one of ReLU. Then, the theorem is valid.

The utilization of the static-max-value ReLU function (S-ReLU) is likely

associated with a reduction in the Lipschitz constant, denoted as K. This observation

is substantiated by the findings presented in Theorem 4.1.1, which indicate a diminished

discrepancy between the outputs of a layer when processing a clean sample and an

adversarial example, especially when contrasted with the behavior of the standard

ReLU activation function. The Lipschitz inequality is expressed as

dY (f(x), f(x
∗)) ≤ K · dX(x, x∗),

Table 4.1. The difference between the outputs of a layer in a model on a clean sample
and a sample injected by small perturbations under possible conditions.

Conditions
Outputs’ difference
ReLU S-ReLU

A ≤ 0 and A+B > m |A−B| |m|
0 < A ≤ m and A+B > m |B| |A−m|
A > m and A+B > m |B| 0

A > m and 0 < A+B ≤ m |B| |B + A−m|
A > m and A+B ≤ 0 |A| |m|
A ≤ m and A+B ≤ m Same
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where x is a clean sample, x∗ is its adversarial example, f(·) is a classifier, dX(·, ·) is a

distance function (e.g., L2 norm and L∞ norm) for an input, and dY (·, ·) is a distance

function (e.g., L2 norm) for an output. The consequential reduction in the Lipschitz

constant, a consequence of employing S-ReLU, signifies an enhancement in the model’s

robustness, as a lower Lipschitz constant is indicative of reduced sensitivity to input

perturbations and, consequently, increased resilience against adversarial examples.

Next, we theoretically show how the max value (denoted by m) affects the

amount of adversarial perturbations in a layer.

Theorem 4.1.2. When the max value (m) of S-ReLU in a layer reduces, the layer’s

outputs between clean samples and adversarial examples are closer.

Proof. This theorem can be easily proved by the information in Table 4.1 summarized

from the proof of Theorem 4.1.1. When m decreases, S-ReLU’s |olj −ol
∗
j | also decreases

or remains the same.

According to Theorem 4.1.2, we can reduce the max values of S-ReLU to

reduce the Lipschitz constant and eventually improve more robustness. However, this

technique may harm the overall performance if the max values are too low.

4.2 Effect of Capped Layer’s Size on Robustness

In this section, we explore the question of whether the width of the layer

(narrow or wide) containing the capped neurons affects robustness. Therefore, we

conducted the following experiment.

4.2.1 Experimental Explanation and Setting

First, we trained a classifier with some layers capped with an initial max value

to control the value after the ReLU function. Then, we evaluated this classifier in

terms of accuracy on clean test samples (i.e., standard accuracy) and adversarial

examples (i.e., robust accuracy) and the success rate of an attack. However, we cannot
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rely only on the initial max value because it may not make the classifier the most

robust. Therefore, we evaluate this classifier with several max values (i.e., from 0.01

to 0.15 in our experiments) to determine the max value that promotes robustness

and does not sacrifice much standard accuracy. We used the MNIST dataset for this

experiment. Also, we created two kinds of classifiers: a “general” two-hidden-layer

dense network and a “reversed” two-hidden-layer dense network. The former consists

of an input layer, a 392-neuron layer with ReLU activation, a 196-neuron layer with

ReLU activation, and the output layer with Softmax activation. In the latter, only

the hidden layers are swapped. Further, the attack we used for this experiment is

Projected Gradient Descent (PGD) (Madry et al., 2017) because it is one of the strong

attacks and is widely used for adversarial robustness evaluation.

4.2.2 Results

Figure 4.1 shows the result of this experiment with the general network. It

demonstrates that with the initial max values of 0.01 and 0.1, capping the second

hidden layer surprisingly outperforms the first hidden layer and capping both the

hidden layers. However, with the initial max value of 1, capping the second hidden

layer underperforms the others when the max value is greater than 0.05 in terms of

robustness. Nonetheless, the robustness of the classifier being capped at the second

hidden layer with a max value less than 0.05 is higher than the others in all the max

values. Therefore, capping the second hidden layer is the best solution for this general

network. Because the second hidden layer has lower neurons than the first hidden

layer, capping the small layer is better than capping the large layer. However, this

result is derived from a specific network. Next, we experiment with the reversed

network.

Figure 4.2 shows the results of the same experiment from the reversed network.

Capping both the hidden layers outperforms the others in most cases. Also, capping

the first hidden layer outperforms capping the second hidden layer in most cases. Since
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(a) Initial max = 0.01 with accuracy score.
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(b) Initial max = 0.01 with success rate.
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(c) Initial max = 0.1 with accuracy score.
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(d) Initial max = 0.1 with success rate.
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(e) Initial max = 1 with accuracy score.
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(f) Initial max = 1 with success rate.

Figure 4.1. Standard accuracy, robust accuracy, and success rate of a two-hidden-layer
classifier under a PGD attack across various maximum perturbation values. Standard
accuracy refers to the classifier’s performance on clean samples, robust accuracy
indicates its performance on adversarial examples, and success rate is the proportion of
correctly classified clean samples that the attack successfully converts into adversarial
examples..
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the first hidden layer contains fewer neurons than the second hidden layer, capping a

small layer is better than capping a large layer in this case. We can summarize that

capping a bottleneck layer would result in the most robustness.

4.3 Effect of Capped Layer’s Order on Robustness

In this section, we discuss the question of whether capping an early or deep layer

in a classifier can provide the most robustness. We conducted the same experiment as

in the previous section. However, we built another classifier consisting of the input

layer, two 784-neuron hidden layers with ReLU activations, and the output layer with

Softmax activation. Noticeably, the hidden layers’ sizes are equal to see which layer

affects the most in terms of robustness.

Figure 4.3 shows the results of this experiment. The classifier capped at the first

hidden layer performs relatively better when the initial max value grows. Evidently, at

the initial max value of 0.01, capping the second hidden layer is better than the first

hidden layer. This phenomenon is intuitive because if we cap only the first hidden

layer, an adversary can eventually find a way to amplify adversarial perturbations in

the subsequent layers. On the other hand, capping at the second hidden layer can

effectively prevent this from occurring. However, increasing the initial max value

results in the opposite consequence. Therefore, capping the deep layer is recommended

with a very low initial max value, and the early layer is preferred with a medium to

high initial max value.
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(a) Initial max = 0.01 with accuracy score.

0.05 0.10 0.15
Max value

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Success rate with 1st Max
Success rate with 2nd Max
Success rate with both Max

(b) Initial max = 0.01 with success rate.
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(c) Initial max = 0.1 with accuracy score.
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(d) Initial max = 0.1 with success rate.
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(e) Initial max = 1 with accuracy score.
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(f) Initial max = 1 with success rate.

Figure 4.2. Standard accuracy, robust accuracy, and success rate of a reversed two-
hidden-layer classifier under a PGD attack across various maximum perturbation
values. Standard accuracy refers to the classifier’s performance on clean samples,
robust accuracy indicates its performance on adversarial examples, and success rate
is the proportion of correctly classified clean samples that the attack successfully
converts into adversarial examples.
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(a) Initial max = 0.01 with accuracy score.
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(b) Initial max = 0.01 with success rate.
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(c) Initial max = 0.1 with accuracy score.
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(d) Initial max = 0.1 with success rate.
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(e) Initial max = 1 with accuracy score.
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(f) Initial max = 1 with success rate.

Figure 4.3. Standard accuracy, robust accuracy, and success rate of a equal two-
hidden-layer classifier under a PGD attack across various maximum perturbation
values. Standard accuracy refers to the classifier’s performance on clean samples,
robust accuracy indicates its performance on adversarial examples, and success rate
is the proportion of correctly classified clean samples that the attack successfully
converts into adversarial examples.
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4.4 Zero Gradient Experiment

In this experiment2, we aim to provide further empirical evidence to support

the validity of our previous results. To this end, we have modified the projected

gradient descent (PGD) attack method to include a new stopping criterion, which we

refer to as “zero gradients”. Specifically, instead of terminating the attack once an

adversarial example has been found, we continue the attack until the gradient of the

objective function is zero. This modification allows us to assess the robustness of a

targeted classifier in a more meaningful way.

We assume that a classifier is robust if the location where the zero gradients

are found is close to the original, clean input sample. This is because if an attacker

encounters a zero gradient, they will no longer be able to perform any gradient-based

attacks, such as the fast gradient sign method (FGSM) or PGD. To measure the

distance between the clean sample and the location where the zero gradients are found,

we use the Euclidean distance.

However, it should be noted that this method can fail if zero gradients are

not found within the maximum number of iterations. Figure 4.4 illustrates examples

of both successful and unsuccessful scenarios. To obtain a more comprehensive

understanding of the robustness of the classifiers, we compute the average distance

only from the test samples where zero gradients are found. We use the MNIST dataset,

along with the classifiers from the previous sections for this experiment.

Figures 4.5, 4.6, and 4.7 show the results of the zero gradient experiment with

the general, reversed and equal networks, respectively. Interestingly, we found that

these results aligned with the previous experiments in Section 4.2 and 4.3. Therefore,

we can conclude that the results in those sections are valid.

2We split the figure in this section into two figures to enlarge the fonts.
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Zero gradient

Exceed the max iteration

Success Fail

Figure 4.4. Examples of success and failure scenarios for the zero-gradient experiment
where a blue arrow is a gradient direction in each step of PGD attack, and the red
dash arrow is the distance between sample x to the zero-gradient location.
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Figure 4.5. Average distance to zero gradients by PGD attack on a range of max
values where the targets are general networks.

4.5 Experiments with Attacks

Next, in this section,3 we apply some adversarial attacks to evaluate how

much S-ReLU can be robust against them. Also, we compare the performance and

robustness of S-ReLU with state-of-the-art approaches.

3Only S-ReLU with Adversarial Training subsection is in the published article; the rest is
new unpublished material. 55
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Figure 4.6. Average distance to zero-gradient areas by PGD attack on a range of max
values where the targets are reversed networks with the MNIST dataset.

4.5.1 Datasets

We used MNIST (LeCun et al., 2010), FMNIST (Xiao et al., 2017b),

KMNIST (Clanuwat et al., 2018) and EMNIST (Cohen et al., 2017) to show the

empirical results for S-ReLU functions. We briefly describe these datasets here:

• MNIST (Modified National Institute of Standards and Technology):

MNIST consists of 60000 training images and 10000 testing images, each

28x28 pixels, representing handwritten digits from 0 to 9. Figure 4.8 show

some examples from this dataset.

• Fashion-MNIST (FMNIST): FMNIST has 60,000 training images and

10,000 testing images, each 28x28 pixels. It represents ten different fashion
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Figure 4.7. Average distance to zero gradients by PGD attack on a range of max
values where the targets are equal networks with the MNIST dataset.

categories, such as shoes, shirts, and dresses. FMNIST has 10 classes.

Figure 4.9 show some examples from this dataset.

• Kuzushiji-MNIST (KMNIST): KMNIST comprises 60000 training images

and 10000 testing images, each 28x28 pixels. It represents handwritten

Japanese characters (Hiragana), and it has 10 classes. Figure 4.10 show some

examples from this dataset.

• Extended MNIST (EMNIST): EMNIST is an extension of MNIST with

additional variations. It has several types, and we use ByClass type which

contains 814,255 characters. The number of classes is 62. EMNIST provides a

diverse set of classes for character recognition challenges. Figure 4.11 show

some examples from this dataset.
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Figure 4.8. Examples of the MNIST dataset

Figure 4.9. Examples of the FMNIST dataset

Figure 4.10. Examples of the KMNIST dataset

Figure 4.11. Examples of the EMNIST dataset

4.5.2 Training Details

We built two-hidden-layer models for this experiment and trained them with

the Adam optimizer (Kingma and Ba, 2014). The first hidden layer has 392 neurons,

and the second hidden layer has 196 neurons. At last, the output layer’s size is the
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number of classes in the dataset. We set the learning rate to 10−3 for 20 epochs. We

ran the hyperparameter tuning through grid search and found that the model with

these hyperparameters performed the best.

4.5.3 Adversarial Attacks

We utilized two adversarial attack strategies to generate adversarial examples

from the test samples and compute the robust accuracy for trained targeted models.

We used these two attacks because they are popular and widely used in the literature.

These two attacks are:

• Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014): This

attack creates adversarial examples by perturbing input data in the direction

that maximizes the model’s loss, utilizing the sign of the gradients and a small

constant.

• Project Gradient Descent (PGD) (Madry et al., 2017): This attack is

an iterative approach, repeatedly updating the input by taking small steps in

the gradient direction and projecting the result back into a small neighborhood

around the original data. While FGSM is computationally less intensive and

involves a single step, PGD is generally more effective and robust, requiring

multiple iterations but producing adversarial examples that are harder to

defend against.

4.5.4 Results

Table 4.2 shows our preliminary results for two-hidden-layer networks on

MNIST, FMNIST, KMNIST, and EMNIST datasets. We only cap the ReLU function

of the second hidden layer and demonstrate the results of different max values.

We follow ANOVA and obtain an F score of 11.15 while the critical value

(α = 0.01) is 4.05. Since the obtained F score is much greater than the critical value,

we reject the null hypothesis. That is, there is a significant difference among the
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classifiers. Also, when taking the average accuracy into consideration, capping ReLU

functions can significantly improve the model’s robustness.

We also use a non-parametric test, i.e., Friedman test, to measure the statistical

difference between those results. We use average ranks in the last row of Table 4.2

in this test. As a result, we obtain the χ2 score of 21.6, and the FF score is 10.69

while the critical value (α = 0.01) is around 4.126. Because those obtained scores

are both greater than the critical value, we reject the null hypothesis. Therefore, the

models are significantly different from each other with the confidence of 99%. After

that, we use the Nemenyi test (Demšar, 2006) to identify which pair of classifiers is

significantly different. We compute the critical difference and obtain 1.05. Hence, the

classifiers with the max values of 0.1 and 0.01 are significantly more robust than the

general classifier.

4.5.5 S-ReLU with Adversarial Training

In this section, we aim to investigate the efficacy of applying adversarial training

techniques to S-ReLU classifiers to enhance their robustness beyond that of general

classifiers that have undergone adversarial training. To accomplish this, we utilize

two-hidden-layer neural networks as the base model and train them using clean test

samples for a total of twenty epochs with the Adam optimizer as described in (Kingma

and Ba, 2014) and a learning rate of 0.001. We only apply the ReLU function cap at

the second hidden layer, as previous sections have demonstrated this to be the most

effective location for such an operation.

Following the initial training phase, we then proceed to apply adversarial

training to these networks through the use of either the Fast Gradient Sign Method

(FGSM) or Projected Gradient Descent (PGD) for an additional ten epochs, with a

perturbation bound of 0.1. Subsequently, we evaluate these networks’ accuracy on

clean test samples and samples that have been attacked using FGSM, PGD, and the

Carlini and Wagner (CW) attack (Carlini and Wagner, 2017). For FGSM and PGD,
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Table 4.2. Accuracy of MNIST, FMNIST, KMNIST and EMNIST two-hidden-layer
classifiers with general ReLU and S-ReLU activation functions on clean test samples

and adversarial test samples generated by using FGSM and PGD with two
perturbation bounds (i.e., ϵ). Also, the average accuracy is provided. Note that the
numbers in parentheses are ranks of the models based on their accuracy in each

dataset and their averages are also provided.

Dataset Attack
No Max Max = 1 Max = 0.1 Max = 0.01

% % % %

MNIST

- 98.49 (1) 98.46 (2) 98.06 (3) 97.88 (4)
FGSM (ϵ = 0.05) 77.34 (4) 80.36 (3) 85.16 (2) 93.31 (1)
PGD (ϵ = 0.05) 55.92 (4) 56.47 (3) 67.90 (2) 93.13 (1)
FGSM (ϵ = 0.1) 41.77 (3) 41.24 (4) 68.04 (2) 92.37 (1)
PGD (ϵ = 0.1) 9.47 (3) 7.45 (4) 39.79 (2) 89.61 (1)

FMNIST

- 89.45 (2) 89.65 (1) 89.11 (3) 87.29 (4)
FGSM (ϵ = 0.05) 35.57 (4) 46.46 (3) 52.17 (2) 80.31 (1)
PGD (ϵ = 0.05) 18.62 (4) 22.16 (3) 40.96 (2) 83.84 (1)
FGSM (ϵ = 0.1) 17.64 (4) 26.52 (3) 38.23 (2) 79.06 (1)
PGD (ϵ = 0.1) 5.20 (4) 5.77 (3) 27.46 (2) 78.65 (1)

KMNIST

- 92.34 (1) 91.89 (2) 91.68 (3) 87.67 (4)
FGSM (ϵ = 0.05) 66.50 (4) 67.96 (3) 71.29 (2) 79.83 (1)
PGD (ϵ = 0.05) 50.44 (4) 50.93 (3) 56.15 (2) 82.08 (1)
FGSM (ϵ = 0.1) 30.20 (4) 34.65 (3) 48.89 (2) 76.96 (1)
PGD (ϵ = 0.1) 8.56 (4) 9.76 (3) 34.07 (2) 75.89 (1)

EMNIST

- 84.65 (2) 84.70 (1) 83.46 (3) 79.84 (4)
FGSM (ϵ = 0.05) 32.91 (4) 60.47 (3) 74.88 (2) 78.38 (1)
PGD (ϵ = 0.05) 8.40 (4) 40.14 (3) 79.13 (2) 79.23 (1)
FGSM (ϵ = 0.1) 10.60 (4) 31.79 (3) 59.00 (2) 76.54 (1)
PGD (ϵ = 0.1) 3.31 (4) 10.26 (3) 65.75 (2) 75.15 (1)

Average 41.87 (3.4) 47.85 (2.8) 63.56 (2.2) 83.35 (1.6)

we employ a perturbation bound of 0.1, a maximum iteration of 10 and a step size

of 0.01. Additionally, in the case of the CW attack, we use a maximum iteration of

10000, a learning rate of 0.01, an initial balancing factor of 0.001, and 9 adjustments

of the balancing factor.

The configurations of the classifiers and their corresponding accuracy on both

clean and adversarial test samples are presented in Table 4.3. The results reveal that

by decreasing the maximum value, the robustness of the classifiers against attacks

using FGSM, PGD, and CW can be improved without sacrificing a significant portion
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Table 4.3. Accuracy of MNIST two-hidden-layer classifiers with ReLU and S-ReLU
on clean test samples and adversarial test samples generated by using FGSM, PGD

and CW.

Max Adv. Clean FGSM PGD CW(L2)
Val. Training % % % %

- - 98.49 41.77 9.47 0.00
1.00 - 98.46 41.24 7.45 0.00
0.10 - 98.06 68.04 39.79 5.56
0.01 - 97.88 92.37 89.61 8.07

- FGSM 98.26 91.44 85.12 0.19
1.00 FGSM 98.35 92.46 81.88 0.18
0.10 FGSM 98.18 93.00 90.37 3.50
0.01 FGSM 97.10 94.07 96.36 8.21

- PGD 98.67 91.85 86.74 0.10
1.00 PGD 98.49 93.32 87.09 0.11
0.10 PGD 98.09 92.64 92.85 3.62
0.01 PGD 96.55 89.21 95.43 8.00

of standard accuracy. This is particularly evident when the models are retrained using

FGSM, which results in similar performance and robustness to retraining using PGD,

despite the latter taking much more time, as previously discussed in (Wong et al.,

2020). Additionally, it is worth noting that although capping the ReLU function can

improve robustness, the CW attack remains particularly effective, as it is not limited

by any perturbation bound. Despite the success of the CW attack, we continue to

see the trend that using a lower max value yields a more robust network. Therefore,

a correctly customized classifier concerning its ReLU functions would ultimately be

robust against CW. In this context, it is essential to note that static capping ReLU

activation functions are a starting point for enhancing adversarial robustness by

customizing architecture.

4.6 S-ReLU Classifier’s Sensitivity Map

As discussed in (Sooksatra and Rivas, 2022), a pixel in an image vulnerable to

adversarial attacks is sensitive to a slight change. In that work, we also proposed an
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Figure 4.12. Sensitivity map of digit five and the summation of the scores on the top.
Note that the more red pixel is, the more sensitive pixel becomes. Also, the black
pixel in the top left of the image is not included in the map. We use it as a maximum
reference value to tune the value’s range across all the images.

equation to compute a sensitivity map to determine how much each pixel is susceptible

to adversarial attacks. The equation is

smap(x, Z) = max

(
0,

∂Zt

∂x
·
∑
c ̸=t

∂Zc

∂x

)
, (4.3)

where x is an input, Z is a classifier whose output is before Softmax function, Zi is

the output of class i, t is the true class of x and 0 is a matrix of 0 whose size is the

same as x. We sum the map’s values across all pixels to show that capping ReLU

functions improves robustness.

We create a two-hidden-layer classifier and train it with several max values

(i.e., 1, 0.1 and 0.01). Figure 4.12 shows the sensitivity map of digit five with the

classifier. Essentially, the number of vulnerable pixels and the summation of the map

decrease when the max value is reduced. Therefore, capping ReLU functions with low

max values can improve the robustness.

4.7 Limitations

In this section, we discuss the limitations of S-ReLU.4 While S-ReLU successfully

enhances adversarial robustness in MNIST classifiers, their performance falters when

applied to more extensive datasets like CIFAR-10. The challenge arises from the

4The material in this section does not appear in any of our other publications.
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substantial layers and numerous zero gradients, leading to what is commonly known

as the gradient vanishing problem. The upcoming sections will explain a compelling

solution to address and overcome this issue, revolutionizing the capability of classifiers

on larger datasets.

4.8 Conclusion

In this chapter, we provided a formal definition of the S-ReLU function and

explored its optimal placement within a neural network to achieve the best balance

between model performance and robustness. Our experiments indicate that integrating

the S-ReLU function in smaller, deeper layers yields the most favorable trade-off.

Additionally, the results from our zero-gradient experiments align closely with those

from previous studies.

We also assess the impact of S-ReLU under adversarial conditions, employing

attack methods such as the Fast Gradient Sign Method (FGSM) and Projected

Gradient Descent (PGD). Our findings reveal that lowering the maximum value

of S-ReLU enhances the model’s defense against these attacks, albeit at a slight

cost to performance. Furthermore, our statistical tests also indicate that S-ReLU

significantly outperforms the general ReLU across several attacks. These observations

are corroborated by the sensitivity analysis detailed in Sooksatra and Rivas (2022).

Despite the successes of S-ReLU in enhancing model robustness, one significant

drawback is its limited generalizability to larger datasets. This limitation suggests an

area for further research and potential improvement in the application of S-ReLU in

diverse neural network architectures.
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CHAPTER FIVE

Dynamic-Max-ReLU Activation Functions

In the preceding chapter, we demonstrated the effectiveness of S-ReLU in

enhancing both model performance and adversarial robustness. We conducted a

series of experiments that showcased improvements in resistance to adversarial attacks

facilitated by the S-ReLU function. However, we observed challenges when applying

S-ReLU to larger datasets beyond MNIST, primarily due to issues related to gradient

vanishing.

To address these challenges, this chapter introduces a new variant, the Dynamic-

Max-Value ReLU function (D-ReLU). This modified function aims to retain the

advantages of S-ReLU while mitigating its limitations on larger datasets. This

approach uses the same activation functions in S-ReLU. However, the max values (i.e.,

m) of those functions are learnable. Therefore, at first, we set those values to be high

and then try to minimize them during the training to improve the robustness such

that the optimizer can adjust the models with the low max values. We minimize the

max values because Table 4.1 shows that low max values (i.e., m) lead to small output

differences and improve robustness. Therefore, the loss function can be formulated as

l(F (x, θ), y) + λ
∑
i

m2
i , (5.1)

where F (x, θ) is a classifier, x is an input, θ is the parameters of F , y is the true label,

mi is the max value of neuron i that has D-ReLU as its activation function and λ

balances the model’s performance and adversarial robustness. Next, we will illustrate

how D-ReLU can enhance adversarial robustness through a series of experiments.

Before presenting our findings, we will first describe the experimental setup.
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5.1 Experimental Setup

In this section, we provide a comprehensive breakdown of the methodologies and

resources utilized to configure and conduct our experimental studies. The components

detailed here are crucial for replicating our results and understanding the efficacy of

our proposed modifications on model robustness.

Firstly, we discuss the datasets employed in our experiments. These datasets

have been carefully selected to cover a variety of scenarios and complexity levels, which

helps in testing the resilience of our modified models across different data distributions

and task complexities.

Secondly, we elaborate on the specific training details which include the

configuration of the machine learning models, the choice of hyperparameters, and the

training procedures we adopted.

Next, we delve into the robustness evaluations. Here, we define the metrics

and methodologies used to assess the robustness of the models against adversarial

attacks. This includes a description of how adversarial examples were generated and

the criteria used to evaluate the model’s performance in the face of such perturbations.

Finally, we outline the baselines for comparison. This includes a discussion on

the existing models and techniques against which our proposed modifications were

benchmarked. Describing these baselines provides context for the improvements our

research introduces and furnishes a clear contrast to demonstrate the incremental

gains in robustness attributed to our enhancements.

Each of these elements plays a vital role in shaping the experimental design

and is critical for assessing the practical impact of our research in enhancing the

robustness of deep learning models against sophisticated adversarial threats.
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5.1.1 Datasets

We used four datasets in this experiment: MNIST Deng (2012), CI-

FAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009) and Tiny-

Imagenet Le and Yang (2015). We already described MNIST in Chapter 4.5.1;

CIFAR10 is a dataset commonly used for machine learning and computer vision tasks.

CIFAR-10 consists of 60000 32x32 color images in 10 different classes, with each

class representing a distinct object or animal category. The dataset is divided into

50000 training images and 10000 testing images. It is widely used as a benchmark

for developing and evaluating image classification algorithms and models. Figure 5.1

shows some examples of this dataset.

The CIFAR100 dataset is a collection of 60000 32x32 color images across 100

different classes, with each class containing 600 images. It serves as a benchmark

for image classification tasks, where each image belongs to one of the 100 fine-

grained object classes. The dataset is commonly used for evaluating machine learning

algorithms and models due to its diverse set of classes and relatively small image size.

Figure 5.2 shows some examples of this dataset.

TinyImageNet is a subset of the large-scale ImageNet dataset, designed for

training deep neural networks on smaller computational resources. It consists of 200

diverse classes, with each class having 100000 training images and 10000 test images.

Each image is of size 64x64 pixels and includes a wide range of object categories,

making it a useful dataset for tasks like classification, detection, and segmentation.

Tiny ImageNet serves as a more manageable alternative to the full ImageNet dataset

for researchers and practitioners working on computer vision tasks. We partitioned

the training set using an 80/20 ratio for validation. Figure 5.3 shows some examples

of this dataset.
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Figure 5.1. Examples of the CIFAR10 dataset

Figure 5.2. Examples of the CIFAR100 dataset

Figure 5.3. Examples of the Tinyimagenet dataset

5.1.2 Training Details

The optimization process employed the Adam optimizer (Kingma and Ba,

2014) with an initial learning rate set to 10−3. Additionally, we implemented the

ReduceOnPlateau callback with a decay factor of 0.5 and a patience of 5, as well as

the EarlyStopping callback with patience of 10 based on the validation loss. The

ReduceOnPlateau callback reduces the learning by multiplying it with its decay factor

when the validation loss does not improve for the patience epochs. The EarlyStopping

callback stops the training when the validation loss does not improve for patience

epochs. The maximum number of epochs for the training procedure was set to 2000.

We conducted three independent training sessions for each model type. All subsequent
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results presented in the following sections represent the average performance obtained

from these three trained models.

We also add a dense layer before the output layer. Incorporating a dense layer

before the output layer is motivated by findings from the experiment conducted in

(Sooksatra et al., 2023). The study demonstrates that employing S-ReLU in the last

hidden layer yields superior results compared to its placement in earlier layers. This

layer’s activation function is D-ReLU for our approach as shown in Figure 5.4 while it

is a general ReLU for other approaches.

Machine
Learning Model

Additional
Layer with
D-ReLU

Output
Layer

Input Output

Figure 5.4. Architecture of our approach by adding a layer (in red) with D-ReLU
before the output layer

5.1.3 Adversarial Attacks

We employed diverse adversarial attack strategies to compute the robust

accuracy for trained targeted models by using the test samples. The selected attacks

encompass the following methodologies:

• Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014)

and Projected Gradient Descent (PGD) (Madry et al., 2017): As

elucidated in Chapter 4.5.3, these attacks form integral components of our

evaluation framework.

• Auto Projected Gradient Descent with Cross Entropy Loss

(APGD CE) (Croce and Hein, 2020): Similar to PGD, this attack
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leverages the cross entropy loss function to generate adversarial examples.

Notably, it incorporates an adaptive step size, distinguishing it from PGD.

• Auto Projected Gradient Descent with DLR (APGD DLR) (Croce

and Hein, 2020): This variant of APGD CE maintains the same underlying

principles as APGD CE but employs Difference of Logits Ratio Loss

(DLR) (Croce and Hein, 2020) as the loss function.

• Carlini and Wagner Attack with L2 Norm (CW L2) (Carlini and

Wagner, 2017): Diverging from the optimization-based approach of the

preceding attacks, CW L2 is characterized by its slower adversarial example

discovery process. However, its potency in generating robust adversarial

examples is noteworthy. It directly minimizes the difference between

clean samples and adversarial examples with L2 norm and maximizes the

misclassification confidence as well.

• Square (Andriushchenko et al., 2020): This attack is blackbox and utilizes

random initialization with vertical stripes to perturb images within a specified

range. By focusing on sparse updates grouped in a square pattern, the attack

strategically alters the input, aiming to induce subtle yet significant changes

in image components. This method leverages the sensitivity of convolutional

networks to high-frequency perturbations and is designed to generate successful

perturbations within a limited radius, ensuring distinct differences from the

original image. By strategically manipulating color channels and employing

sparse updates, the attack aims to maximize perturbation impact while

adhering to image constraints and network sensitivities.

5.1.4 SOTA Methods for Robustness

To justify our approach’s novelty, we also compared it to the state-of-the-art

methods for adversarial robustness. We selected the popular and effective methods as

follows:
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• Adversarial Training (Madry et al., 2017): This method retrains a

model with adversarial examples after its successful natural training. We

retrained the models for 10 epochs.

• TRADES (Zhang et al., 2019): This method balances the performance

and robustness of a model by customizing the loss function. The loss function

consists of two parts. The first part increases the performance and the other

part improves the robustness by computing the difference between the output

distributions between the clean samples and their adversarial counterparts.

Please be aware that the method utilizes a parameter denoted as β to strike a

balance between performance and robustness. We adopted the same values of

β as employed by the original authors, specifically β = 1 and 6.

We used PGD for generating adversarial examples for all the mentioned methods.

5.2 Whitebox-Attack Experiments

5.2.1 Experimental Results for MNIST

We created two models for the MNIST dataset. The first one is a two-hidden-

layer dense network, and the other one is a shallow convolutional network. These

networks are enough to evaluate the MNIST dataset. We set the perturbation bound

for FGSM, PGD, PGD CE and PGD DLR to be 0.1. Also, we set the perturbation

bound for CW L2 to be 18.

The outcomes of tuning the balancer, denoted as λ in (5.1), are illustrated in

Figure 5.5. Note that at the balancer of zero, the models were naturally trained, and

they were not robust against the attacks at all. Through experimentation on both a

dense network and a shallow CNN, it was observed that elevating the balancer led to

increased accuracies on adversarial examples generated by FGSM, PGD, APGD CE,

and APGD DLR. Interestingly, this improvement in adversarial accuracy occurred

while the accuracy on clean samples remained relatively stable. This outcome aligns
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with our expectations. However, in the case of adversarial examples generated by

CW L2, the accuracy did not exhibit a similar increase. This anomaly can be attributed

to the strength of the CW L2 attack, where the perturbation applied may remain

consistent across all samples.

(a) Dense (b) Shallow CNN

Figure 5.5. Accuracy of two types of networks on clean MNIST and adversarial
examples when adding the dense layer with a D-ReLU function before the output
layer.

Table 5.1 presents the performance (accuracy on clean samples) and robustness

(accuracy on adversarial examples) achieved by training models using both state-of-

the-art methods and our proposed approach. We carefully select the optimal tradeoff

between performance and robustness for our approach, with the corresponding balancer

values detailed in the table. Notably, our approach outperforms other methods across

various scenarios, except for the accuracy of the dense model on both clean samples

and adversarial examples generated by CW L2. Importantly, our method achieves

this superior performance without the need to compute adversarial examples during

the training process. This observation underscores the efficacy of our approach in

endowing machine learning models with adversarial robustness without compromising

overall performance.
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Table 5.1. Accuracy metrics for dense networks and shallow CNNs under various
robust training schemes, evaluating on both clean samples and adversarial examples
generated by different attacks on the MNIST dataset. Note that the accuracy metrics
in bold are the highest in a specific model among the different training methods.

Note that APCE is APGDCE, APDLR is APGDDLR, the accuracy metrics in bold are
the highest in a specific model among the different training methods, the numbers in
parenthesis are the ranks for training methods under an architecture, TRADES-k
means the TRADES approach with β = k, and D-ReLU-k means the D-ReLU

approach with m = k.

Model Training
Clean FGSM PGD APCE APDLR CWL2

% % % % % %

Dense

AT
98.10 89.77 87.7 87.63 87.47 12.57
(1) (4) (4) (4) (4) (4)

TRADES-1
98.07 93.03 90.87 90.97 90.83 16.50
(2) (2) (2) (2) (2) (1)

TRADES-6
96.20 91.40 89.53 89.57 89.13 12.83
(4) (3) (3) (3) (3) (2)

D-ReLU-102
97.77 97.47 97.10 96.93 97.03 12.63
(3) (1) (1) (1) (1) (3)

AT
99.20 96.77 95.83 95.70 95.73 16.47
(2) (3) (3) (3) (3) (2)

TRADES-1
98.90 96.93 96.77 96.60 96.67 13.87

Shallow (3) (2) (2) (2) (2) (4)
CNN

TRADES-6
98.17 96.47 95.30 95.03 95.03 16.23
(4) (4) (4) (4) (4) (3)

D-ReLU-10−1 99.40 98.73 99.00 98.30 98.10 16.60
(1) (1) (1) (1) (1) (1)

5.2.2 Experimental Results for CIFAR10

We trained 6 types of models: two-hidden-layer dense networks, shallow

convolutional neural networks (CNN), ResNet50 (He et al., 2016), ResNet101 (He

et al., 2016), MobilenetV2 (Sandler et al., 2018) and InceptionV3 (Szegedy et al.,

2016). We set the perturbation bounds for FGSM, PGD, APGD CE and APGE DLR

to be 0.01. Moreover, the bound for CW L2 is 18.

Figure 5.6 provides a detailed visualization of the performance outcomes for

various models that employ different balancer values under multiple adversarial attack

scenarios. This figure enables a comparative analysis, particularly focusing on how
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these models withstand adversarial perturbations when adjusted with varying levels

of balancers.

Consistent with our prior observations on the MNIST dataset, we noted a

similar trend in the CIFAR-10 dataset. Specifically, as the balancer values increase,

there is a noticeable enhancement in robustness against several attacks. This pattern

aligns with our expectations and demonstrates that carefully calibrated balancer

values can significantly improve a model’s resistance to certain types of adversarial

attacks. However, it is important to highlight that while higher balancer values

enhance robustness, there is a threshold beyond which further increases can negatively

impact overall model performance. This suggests a trade-off where excessively high

balancer values may lead to diminished accuracy or other performance metrics under

standard conditions.

In light of these findings, the D-ReLU mechanism appears to be particularly

effective. For medium-sized datasets such as CIFAR10, and for advanced models

including ResNet, MobileNet, and Inception, D-ReLU strikes a balance that optimizes

robustness without excessively compromising overall performance. This makes D-

ReLU a promising choice for practitioners looking to enhance model robustness in

practical applications.

The implications of these results are multifaceted. Firstly, they underscore

the importance of balancing robustness and performance. While enhancing defense

mechanisms against adversarial attacks is crucial, maintaining high levels of accuracy

and performance in non-adversarial scenarios is equally important. This balance

ensures that the models remain useful and effective in real-world applications where

both adversarial and benign inputs are encountered.

Secondly, the trend observed with escalating balancer values offers insights into

the tuning process for adversarial robustness. It suggests that there is a critical balancer

value range that optimizes defense mechanisms without significantly degrading the
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(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 5.6. Accuracy of several types of networks on clean CIFAR10 and adversarial
examples when adding the dense layer with a D-ReLU function before the output
layer.
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model’s general performance. Identifying this optimal range can guide the development

of more resilient machine learning systems.

Furthermore, the suitability of D-ReLU for state-of-the-art models such as

ResNet, MobileNet, and Inception indicates its potential for broader adoption. These

models are widely used in various applications due to their performance and efficiency.

Enhancing their robustness with D-ReLU can make them more reliable in adversarial

settings, thereby extending their applicability in security-sensitive domains such as

autonomous driving, medical imaging, and financial forecasting.

We also experimented with placing the additional convolutional layer with

D-ReLU after the input layer instead of incorporating it in the dense layer before the

output layer. Figure 5.7 presents the outcomes, illustrating the impact on several

CNN architectures when the D-ReLU layer is added at the beginning of the network.

The results indicate that positioning the D-ReLU layer early in the network

does not yield the same level of effectiveness as when placed in deeper layers. For the

Shallow CNN (Figure 5.7a), MobilenetV2 (Figure 5.7b), and InceptionV3 (Figure 5.7c),

there is a notable decline in adversarial robustness across different attack types (FGSM,

PGD, APGD CE, APGD DLR, CW L2) as compared to when the D-ReLU layer is

situated deeper in the network. This trend suggests that the D-ReLU function, when

applied later in the model, significantly enhances the model’s ability to withstand

adversarial attacks while maintaining high accuracy on clean samples.

The implications of these findings are significant for designing robust neural

network architectures. Incorporating D-ReLU in deeper layers allows the network

to better leverage its properties for improving adversarial robustness. This

highlights the importance of strategic layer placement within CNNs, particularly

for applications requiring high resilience to adversarial perturbations without

compromising performance on clean data.

76



(a) Shallow CNN (b) MobilenetV2

(c) InceptionV3

Figure 5.7. Accuracy of several types of CNNs on clean CIFAR10 and adversarial
examples when adding a convolutional layer with a D-ReLU function after the input
layer.

Table 5.2 and A.1 provide a comprehensive comparison of accuracy metrics and

rankings for various robust training schemes applied to different models on the CIFAR10

dataset. The table reveals that D-ReLU consistently achieves an optimal balance

between performance on clean samples and robustness against adversarial attacks,

particularly excelling in the context of deep networks like ResNet and InceptionV3.

Interestingly, while TRADES with β = 6 demonstrated superior robustness for

the dense network, it did so at the expense of performance on clean samples. In contrast,

our D-ReLU approach significantly outperformed other methods in generalizing to

adversarial examples, and it did so without the need for computing adversarial examples
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Table 5.2. Accuracy metrics for multiple types of networks under various robust
training schemes, evaluating on both clean samples and adversarial examples

generated by different adversarial attacks on the CIFAR10 dataset. Note that APCE

is APGDCE, APDLR is APGDDLR, the accuracy metrics in bold are the highest in a
specific model among the different training methods, TRADES-k means the TRADES
approach with β = k, and D-ReLU-k means the D-ReLU approach with m = k.

Model Training
Clean FGSM PGD APCE APDLR CWL2

% % % % % %

Dense

AT 52.33 34.20 32.83 32.73 31.80 40.10
TRADES-1 52.32 29.97 29.23 29.20 28.37 38.67
TRADES-6 51.30 37.00 36.53 36.50 34.57 42.30
D-ReLU-10−7 51.87 26.03 23.87 23.80 23.77 36.10

AT 67.13 42.83 40.07 39.90 38.37 50.67
Shallow TRADES-1 67.37 38.83 35.93 35.97 34.13 48.60
CNN TRADES-6 63.47 46.13 44.80 44.80 42.67 51.67

D-ReLU-100 66.37 65.60 65.60 64.60 64.07 65.83
AT 78.20 54.77 49.37 48.90 49.97 63.00

Resnet TRADES-1 75.63 52.12 40.77 39.87 40.20 56.43
50 TRADES-6 71.63 54.20 50.90 50.40 48.23 57.63

D-ReLU-104 78.87 78.83 78.73 78.20 78.40 78.87
AT 68.90 44.90 40.33 39.43 38.27 49.30

Resnet TRADES-1 74.60 47.07 32.87 31.17 31.37 51.40
101 TRADES-6 66.67 45.43 39.80 39.17 35.93 47.67

D-ReLU-104 75.10 75.03 75.37 74.73 74.67 75.10
AT 77.97 46.50 32.93 30.73 32.10 51.80

Mobilenet TRADES-1 73.13 46.23 31.00 28.87 28.77 49.37
V2 TRADES-6 68.40 48.80 43.23 43.03 40.80 51.13

D-ReLU-102 81.67 81.57 82.00 80.87 80.77 81.67
AT 84.60 64.27 58.80 58.30 59.33 66.47

Inception TRADES-1 82.53 62.30 52.67 51.90 51.87 62.40
V3 TRADES-6 76.97 61.97 58.00 57.80 56.03 62.10

D-ReLU-102 87.17 86.70 86.57 86.13 86.23 86.83

during training. This characteristic is particularly advantageous as it simplifies the

training process and reduces computational overhead.

Moreover, D-ReLU’s ability to maintain high performance on clean samples

is noteworthy. Unlike other robust training schemes that often sacrifice accuracy on

clean data to gain adversarial robustness, D-ReLU preserved the integrity of clean

sample performance, making it a highly efficient and practical approach for enhancing
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model robustness without compromising overall accuracy. This makes D-ReLU a

highly effective method for deploying robust models in real-world scenarios where

maintaining high accuracy on clean data is crucial.

Additionally, we perform an ANOVA test and obtain an F score of 17.4, which

surpasses the critical value of 3.92 at α = 0.01. Given that the F score is significantly

higher than the critical value, we reject the null hypothesis and conclude that there

are significant differences among the approaches with 99% confidence. Moreover,

considering the average accuracy, it is evident that D-ReLU significantly enhances the

model’s robustness.

Furthermore, We conduct a non-parametric test, specifically the Friedman test,

to assess the differences between the results. This test uses the ranks provided in

Table A.1. The test yields a χ2 score of 39.43 and an FF score of 20.12. The critical

value (α = 0.01) ranges between 2.13 and 2.18 for the degrees of freedom of 3 and 105,

respectively. Given that both the chi-square and FF scores are significantly higher

than the critical value, we reject the null hypothesis. Consequently, we conclude that

the models differ significantly from each other with a confidence level of 99%.

Subsequently, we employ the Nemenyi test (Demšar, 2006) to pinpoint which

pairs of classifiers exhibit significant differences. The computed critical difference is

0.656. The differences in the average ranks between D-ReLU and the other techniques

are as follows: 0.86 for adversarial training, 1.89 for TRADES-1, and 1.14 for TRADES-

6. Each of these differences surpasses the critical difference. Therefore, we conclude

that classifiers utilizing D-ReLU demonstrate significantly greater robustness compared

to those using all other methods.

5.2.3 Experimental Results for CIFAR100

Figure 5.8 illustrates the accuracy of various CNN architectures on clean

CIFAR100 samples and adversarial examples generated by different white-box attacks.

The figures reveal several important trends. Across all models, we observe a general
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pattern where the accuracy on clean samples remains relatively stable or slightly

decreases as the balancer value increases. This stability indicates that the addition of

the D-ReLU layer does not significantly compromise the model’s performance on clean

data, which is crucial for maintaining the overall utility of the model in non-adversarial

settings.

There is a notable improvement in robustness with increasing balancer values

for adversarial examples. This trend is consistent across all types of white-box attacks

considered: FGSM, PGD, APGD CE, APGD DLR, and CW L2. The accuracy

on adversarial examples shows a significant upward trajectory, especially for higher

balancer values, suggesting that the D-ReLU function effectively mitigates the impact of

adversarial perturbations. This improvement in robustness is particularly pronounced

in more complex models like ResNet50, ResNet101, MobilenetV2, and InceptionV3

Table 5.3 and A.2 show the comparison between our approach and the other

baselines concerning performance and robustness. Although the baselines outperform

our approach in three architectures, our approach can provide more robust models

than the other baselines in every case. Particularly in the cases of MobilenetV2 and

InceptionV3, our approach exhibits notably superior performance compared to the

other baselines.

5.2.4 Experimental Results for TinyImagenet

Figure 5.9 presents the accuracy of several neural network architectures on

clean TinyImagenet samples and adversarial examples produced by various white-box

attacks. The networks assessed include Dense, Shallow CNN, ResNet50, ResNet101,

MobilenetV2, and InceptionV3. The experiments involve integrating a dense layer

with a D-ReLU function before the output layer and varying the balancer value to

observe its impact on model performance and robustness.

The graphs demonstrate a consistent pattern across all models, indicating

the efficacy of the D-ReLU layer in enhancing adversarial robustness. On clean
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(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 5.8. Accuracy of several types of networks on clean CIFAR100 and adversarial
examples when adding the dense layer with a D-ReLU function before the output
layer.

81



(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 5.9. Accuracy of several types of networks on clean TinyImagenet and
adversarial examples when adding the dense layer with a D-ReLU function before the
output layer.
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Table 5.3. Accuracy metrics for multiple types of networks under various robust
training schemes, evaluating on both clean samples and adversarial examples

generated by different adversarial attacks on the CIFAR100 dataset. Note that APCE

is APGDCE, APDLR is APGDDLR, the accuracy metrics in bold are the highest in a
specific model among the different training methods, TRADES-k means the TRADES
approach with β = k, and D-ReLU-k means the D-ReLU approach with m = k.

Model Training
Clean FGSM PGD APCE APDLR CWL2

% % % % % %

Dense

AT 24.47 14.80 14.30 14.20 12.63 17.53
TRADES-1 22.97 13.37 13.23 13.17 11.30 16.27
TRADES-6 23.27 13.87 13.73 13.60 12.27 16.60
D-ReLU-10−1 21.47 21.03 21.00 20.03 19.77 20.73

AT 37.03 17.73 16.47 16.30 14.43 22.30
Shallow TRADES-1 32.60 12.87 11.50 11.43 9.47 18.50
CNN TRADES-6 34.80 18.67 17.87 17.87 15.40 22.33

D-ReLU-1 28.63 27.53 27.33 24.87 24.60 27.23
AT 48.67 26.67 21.83 21.53 23.13 31.90

Resnet TRADES-1 48.97 26.57 19.80 19.27 20.03 30.50
50 TRADES-6 43.97 28.90 26.03 25.70 24.03 30.63

D-ReLU-102 52.33 51.53 52.47 50.20 51.17 51.63
AT 44.97 23.57 18.67 18.33 18.77 27.77

Resnet TRADES-1 48.10 24.17 17.70 16.87 17.80 28.10
101 TRADES-6 45.20 28.21 20.53 19.32 19.44 30.02

D-ReLU-1 44.20 39.03 43.10 37.33 36.60 40.63
AT 51.37 23.83 15.30 14.43 15.73 28.50

Mobilenet TRADES-1 42.97 19.50 9.47 8.20 8.60 20.70
V2 TRADES-6 40.13 24.50 20.73 20.13 18.87 25.40

D-ReLU-1 56.40 54.90 55.07 53.80 54.17 54.97
AT 56.37 32.57 27.20 26.60 28.80 34.33

Inception TRADES-1 60.63 35.63 26.80 25.83 26.50 35.07
V3 TRADES-6 51.10 34.43 31.20 30.90 29.50 34.47

D-ReLU-102 67.07 65.10 64.43 63.47 63.70 65.27

TinyImagenet samples, the accuracy generally remains stable or exhibits minor

fluctuations as the balancer value changes. This stability suggests that the addition of

the D-ReLU layer does not significantly impair the model’s ability to correctly classify

clean samples, maintaining its utility in standard scenarios.

For adversarial examples generated by white-box attacks (FGSM, PGD,

APGD CE, APGD DLR, and CW L2), there is a clear trend of improved robustness
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with increasing balancer values. The accuracy on these adversarial examples improves

markedly, especially at higher balancer values, indicating that the D-ReLU function

effectively counteracts the adversarial perturbations. This improvement is particularly

evident in complex models like ResNet50, ResNet101, MobilenetV2, and InceptionV3,

which show substantial gains in accuracy against adversarial attacks.

Table 5.4 shows the performance and robustness of our approach and the other

baselines on the TinyImagenet dataset. Also, Table A.3 shows the ranking of the

approaches in each architecture. Our approach is struggling to find the balance between

performance and robustness. However, in MobilenetV2, our approach outperforms the

other ones in terms of performance and robustness.

5.2.5 Discussion

The consistent improvements in adversarial robustness across MNIST, CIFAR10,

CIFAR100, and TinyImagenet datasets highlight several key implications:

First, the D-ReLU layer’s effectiveness across different datasets and model

architectures indicates its broad applicability. It suggests that this technique can be

reliably used to enhance the adversarial robustness of various neural networks without

specific tailoring to individual datasets.

Second, despite the significant gains in adversarial robustness, the performance

on clean samples remains largely unaffected. This balance ensures that the models

remain useful and reliable in standard conditions, which is critical for practical

deployment.

Third, the approach scales well with model complexity. More advanced models

like ResNet and InceptionV3, which are typically used in real-world applications, benefit

greatly from the addition of the D-ReLU layer, showing substantial improvements in

defending against sophisticated white-box attacks.

Moreover, by effectively countering a range of white-box attacks, the D-ReLU

layer enhances the overall security of neural networks. This makes it a valuable
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Table 5.4. Accuracy metrics for multiple types of networks under various robust
training schemes, evaluating on both clean samples and adversarial examples

generated by different adversarial attacks on the TinyImagenet dataset. Note that
APCE is APGDCE, APDLR is APGDDLR, the accuracy metrics in bold are the highest
in a specific model among the different training methods, TRADES-k means the
TRADES approach with β = k, and D-ReLU-k means the D-ReLU approach with

m = k.

Model Training
Clean FGSM PGD APCE APDLR CWL2

% % % % % %

Dense

AT 8.63 5.40 5.13 5.00 4.27 7.00
TRADES-1 8.57 4.80 4.77 4.73 4.10 7.47
TRADES-6 8.70 5.07 5.13 5.10 3.93 7.30
D-ReLU-10−1 7.53 7.30 7.53 6.87 6.83 7.30

AT 18.33 4.80 4.17 4.10 2.73 10.60
Shallow TRADES-1 14.93 2.17 1.60 1.60 0.97 8.10
CNN TRADES-6 16.37 4.57 4.07 3.97 2.67 10.63

D-ReLU-1 8.40 8.20 7.97 7.20 6.93 7.93
AT 40.67 17.57 13.17 12.93 14.03 30.87

Resnet TRADES-1 48.10 22.15 16.10 15.55 14.95 36.35
50 TRADES-6 40.97 23.93 21.87 21.57 19.77 31.57

D-ReLU-1 38.53 32.43 36.93 29.33 30.83 35.83
AT 32.73 15.43 13.10 12.63 11.40 24.17

Resnet TRADES-1 47.57 20.50 15.07 14.57 14.43 34.73
101 TRADES-6 39.13 22.30 20.37 20.03 17.67 30.63

D-ReLU-1 27.83 22.13 25.77 19.93 21.10 24.73
AT 50.00 23.13 16.73 16.30 16.97 37.73

Mobilenet TRADES-1 48.87 20.60 13.57 12.83 12.00 35.10
V2 TRADES-6 43.20 23.70 21.23 20.87 19.03 33.73

D-ReLU-1 51.10 33.63 38.00 31.07 34.63 37.03
AT 39.07 18.67 14.63 14.57 15.20 27.90

Inception TRADES-1 60.43 32.53 23.37 22.67 24.13 46.17
V3 TRADES-6 50.43 32.03 29.23 28.90 28.30 40.40

D-ReLU-1 42.63 22.13 26.47 19.83 22.50 27.97
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addition to the suite of techniques aimed at protecting models against adversarial

threats.

The integration of a dense layer with a D-ReLU function before the output

layer provides a robust defense mechanism against white-box attacks across MNIST,

CIFAR10, CIFAR100, and TinyImagenet datasets. This approach ensures that neural

networks can maintain high performance on clean samples while significantly improving

their resilience to adversarial perturbations, thus enhancing their reliability and security

in various applications.

5.3 Blackbox-Attack Experiments

In addition to the promising results against white-box attacks, we have also

evaluated the performance of the D-ReLU function in enhancing the robustness of

CNNs against black-box attacks, specifically the Square attack. Figure 5.10, 5.11 and

5.12 provided offer valuable insights into how D-ReLU impacts various models across

different datasets under black-box attack scenarios.

5.3.1 Experimental Results for CIFAR10

In Figure 5.10, the accuracy of several network types on clean CIFAR10 data

and adversarial examples generated by the blackbox attack is depicted. For dense

networks (Figure 5.10a), the accuracy on clean samples remains relatively stable across

different balancer values. However, the accuracy against adversarial examples shows a

notable improvement with increasing balancer values, indicating enhanced robustness.

Shallow CNNs (Figure 5.10b) display a similar pattern, with a significant improvement

in adversarial robustness at higher balancer values, while the clean accuracy remains

consistent.

ResNet50 and ResNet101 (Figures 5.10c and 5.10d) both demonstrate

substantial gains in adversarial robustness with increasing balancer values. This

trend suggests that deeper networks benefit more from the D-ReLU layer in terms of

86



adversarial resilience. MobilenetV2 (Figure 5.10e) also shows consistent improvement

in adversarial accuracy with higher balancer values, despite slight fluctuations in

clean accuracy. InceptionV3 (Figure 5.10f) exhibits a strong increase in adversarial

robustness with higher balancer values while maintaining high accuracy on clean

samples.

5.3.2 Experimental Results for CIFAR100

Figure 5.11 presents the accuracy metrics for CIFAR100. Dense networks

(Figure 5.11a) show moderate improvement in adversarial robustness with the addition

of the D-ReLU layer, though clean accuracy remains largely unaffected. Shallow CNNs

(Figure 5.11b) follow a clear trend of increasing adversarial accuracy with higher

balancer values, indicating the D-ReLU layer’s effectiveness in enhancing robustness.

For deeper networks like ResNet50 and ResNet101 (Figures 5.10c and 5.11d),

there is improved adversarial robustness with increasing balancer values, though a

slight decrease in clean accuracy is observed at higher balancer values. MobilenetV2

(Figure 5.11e) displays marked improvement in adversarial robustness with higher

balancer values, with minimal fluctuations in clean accuracy. InceptionV3 (Figure 5.11f)

shows the highest gains in adversarial robustness, maintaining strong performance on

clean samples.

5.3.3 Experimental Results for TinyImagenet

In Figure 5.12, the results for TinyImagenet are detailed. Dense networks

(Figure 5.12a) show a significant increase in adversarial robustness with higher balancer

values, while clean accuracy remains stable. Shallow CNNs (Figure 5.12b) exhibit

improved adversarial accuracy with higher balancer values, though clean accuracy

shows some variability.

Deeper networks like ResNet50 and ResNet101 (Figures 5.12c and 5.12d) benefit

significantly in terms of adversarial robustness with increasing balancer values, with
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(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 5.10. Accuracy of several types of networks on clean CIFAR10 and adversarial
examples generated by a blackbox attack (i.e., square attack) when adding the dense
layer with a D-ReLU function before the output layer.
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(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 5.11. Accuracy of several types of networks on clean CIFAR100 and adversarial
examples generated by a blackbox attack (i.e., square attack) when adding the dense
layer with a D-ReLU function before the output layer.
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slight fluctuations in clean accuracy. MobilenetV2 (Figure 5.12e) demonstrates notable

improvement in adversarial robustness with higher balancer values, with clean accuracy

remaining relatively unaffected. InceptionV3 (Figure 5.12f) shows the most substantial

gains in adversarial robustness among all tested architectures, with clean accuracy

remaining high.

5.3.4 Comparison to Other Baselines

Table 5.5 and A.4 provide accuracy metrics and rankings for various neural

network models trained under different robust training schemes and evaluated on

clean samples as well as adversarial examples generated by a blackbox attack (denoted

as Square) on the CIFAR10, CIFAR100, and TinyImagenet datasets. The values

displayed are in percentages, with the highest accuracy metrics highlighted in bold for

each specific model among the different training methods.

The TRADES-6 strategy demonstrates superior performance across most

scenarios in the dense network. In the Shallow CNN architecture, the D-ReLU

method showcases a competitive edge over TRADES-based approaches specifically

on the CIFAR10 dataset. However, TRADES-6 surpasses D-ReLU in other instances.

For Resnet50, MobilenetV2, and InceptionV3 models, D-ReLU stands out as the top

performer on CIFAR10 and CIFAR100 datasets. Nevertheless, its efficiency on the

TinyImagenet dataset falls short in comparison to the TRADES-based techniques,

highlighting a trade-off between performance and robustness. Resnet101 presents a

mix of results, showcasing variability in its performance outcomes.

5.3.5 Discussion

The effectiveness of D-ReLU against the black-box attack has several important

implications. First, it highlights the potential of D-ReLU to provide robust defenses in

more realistic adversarial settings where attackers lack full knowledge of the model’s
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(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 5.12. Accuracy of several types of networks on clean Tinyimagenet and
adversarial examples generated by a blackbox attack (i.e., square attack) when adding
the dense layer with a D-ReLU function before the output layer.
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Table 5.5. Accuracy metrics for multiple types of networks under various robust
training schemes, evaluating on both clean samples and adversarial examples
generated by a blackbox attach (i.e. Square) on the CIFAR10, CIFAR100 and

TinyImagenet datasets. Note that the accuracy metrics in bold are the highest in a
specific model among the different training methods. Note that TRADES-k means

the TRADES approach with β = k.

Model Training
CIFAR10 CIFAR100 TinyImagenet

Clean Square Clean Square Clean Square
% % % % % %

Dense
TRADES-1 52.33 34.03 22.97 13.90 8.57 4.80
TRADES-6 51.30 38.47 23.27 14.13 8.70 4.87
D-ReLU 48.43 33.43 21.47 11.33 7.53 3.07

Shallow CNN
TRADES-1 67.37 45.93 32.60 15.47 14.93 5.43
TRADES-6 64.50 49.30 34.80 19.70 16.37 7.13
D-ReLU 66.37 51.33 32.87 13.53 16.20 5.40

Resnet50
TRADES-1 75.70 50.70 48.97 25.10 48.40 26.53
TRADES-6 71.63 53.57 43.97 27.03 40.97 25.03
D-ReLU 78.53 62.87 52.33 28.43 38.53 20.50

Resnet101
TRADES-1 74.60 45.37 48.10 23.20 47.57 25.07
TRADES-6 66.67 43.63 10.67 1.67 39.13 24.00
D-ReLU 72.00 53.03 44.20 28.07 27.83 12.43

MobilenetV2
TRADES-1 73.13 43.13 42.97 15.40 48.87 25.00
TRADES-6 68.60 49.17 40.13 22.30 43.20 26.23
D-ReLU 82.90 61.03 56.40 27.90 51.10 18.33

InceptionV3
TRADES-1 82.53 64.17 60.63 34.50 60.43 39.60
TRADES-6 76.97 62.40 51.10 34.03 50.43 36.10
D-ReLU 87.17 74.20 67.07 41.40 42.63 24.63

parameters and architecture. This makes D-ReLU a valuable tool for real-world

applications where security and reliability are paramount.

Second, the consistent improvement in robustness across different architectures

and datasets suggests that D-ReLU can be widely applied to various deep learning

models, making it a versatile and scalable solution for enhancing adversarial defenses.

Lastly, the ability of D-ReLU to improve robustness without compromising

performance on clean samples is particularly noteworthy, especially on the CIFAR10

and CIFAR100 datasets. This balance between robustness and accuracy ensures that

models remain effective for their intended tasks while being resilient to adversarial
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perturbations. However, it is still difficult to train the model with D-ReLU in a large

dataset like the TinyImagenet dataset.

Overall, the findings underscore the robustness of the D-ReLU function against

the black-box attack, further validating its utility in strengthening the security of deep

learning models in diverse and practical scenarios. This reinforces the importance of

integrating such robust functions into model architectures to safeguard against a wide

range of adversarial threats.

5.4 Experiments with Augmented Dataset

The study conducted by Wang et al. (2023), as highlighted within the extensive

literature review, has brought to light the significant impact of incorporating the

elucidating diffusion model (EDM) proposed by Karras et al. (2022) as a means to

effectively mitigate the prevalent issue of overfitting encountered during adversarial

training processes. By augmenting the training dataset with EDM, promising results

have been observed in terms of enhancing the robustness and generalization capabilities

of the learning model. Against this backdrop, the subsequent analysis presented in this

section undertakes a comprehensive evaluation through comparative studies between

our proposed methodology and the renowned TRADES technique introduced by Zhang

et al. (2019). This comparative analysis is conducted utilizing the augmented training

samples, demonstrating the efficacy and superiority of our approach in bolstering the

resilience of the learning system against adversarial attacks and enhancing overall

performance metrics.

In every epoch, a combination of generated samples and original training

samples is utilized. As outlined in the research conducted by Wang et al. (2023), a

specific configuration is followed for the CIFAR10 and CIFAR100 datasets. Here, a

random selection process is employed to choose samples from both the original dataset

and the generated samples. Approximately 30% of the training samples are sourced

from the original dataset while the remaining samples are from the generated dataset.
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It is imperative to note that despite this mixing process, the overall size of the training

dataset remains constant.

Furthermore, the research also stipulates the use of a hyperparameter value of

β = 5 for the TRADES method. Moving on to the TinyImagenet dataset, a slightly

different approach is adopted. In this case, 20% of the training samples are sourced

from the original dataset with the remaining samples coming from the generated

dataset. Consistent with the literature by Wang et al. (2023), a value of β = 8 is

utilized for the TRADES method in this context. To ensure a fair comparison, the

same β = 5 value is also utilized in this scenario.

5.4.1 Experimental Results

The visual representations displayed in Figure 5.13 for CIFAR10 and Figure 5.14

for CIFAR100 offer an insightful analysis into the performance and robustness under

whitebox attacks of various architectures trained with D-ReLU, leveraging a training

dataset enriched with generated samples from EDM. The fusion of D-ReLU with EDM

showcases impressive results on both CIFAR10 and CIFAR100 datasets, particularly

demonstrating significant efficacy when applied to deep architectures. Notably, the

combined approach of D-ReLU plus EDM exhibits remarkable performance and

robustness, especially noteworthy is how it outperforms instances where D-ReLU is

employed without the integration of EDM.

Intriguingly, even at higher values of m, such as m = 100, the performance and

robustness metrics do not exhibit a notable decline as observed with the utilization

of D-ReLU in isolation, underscoring the added value and efficacy of incorporating

EDM-generated samples into the training set. This observation highlights the positive

impact of integrating EDM in the training process, particularly in enhancing the

overall performance and robustness of deep architectures across the CIFAR10 and

CIFAR100 datasets. Such findings provide valuable insights into the effectiveness of
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synergistic methods like D-ReLU plus EDM in improving the learning capabilities and

resilience of neural network models.

Tables 5.6 and 5.7 provide a comparative analysis between our approach using

D-ReLU and the TRADES method with genereated samples from EDM across the

CIFAR10 and CIFAR100 datasets respectively. Also, Tables A.5 and A.6 show the

rankings for comparison. provide a comparative analysis between our approach using

D-ReLU and the TRADES method with genereated samples from EDM across the

CIFAR10 and CIFAR100 datasets respectively. When considering the CIFAR10

dataset, it is evident that D-ReLU generally surpasses TRADES regarding the

robustness of the models in a majority of the scenarios. The exception lies in cases

involving smaller network architectures such as Dense and Shallow CNNs, where

TRADES demonstrates a noticeably superior performance compared to D-ReLU.

In contrast, D-ReLU shows its strengths in deeper network architectures, where its

performance is on par with or even exceeds that of TRADE. This trend of comparative

performance is not isolated to the CIFAR10 dataset but is also observable in the

results for the CIFAR100 dataset.

For deeper evaluations, the performance differential between D-ReLU and

TRADES across different network depths highlights the significance of choosing

appropriate defensive techniques depending on the complexity and depth of the models

employed. Further insights suggest that while TRADES tends to be more effective

with simpler, less deep networks, D-ReLU offers competitive advantages primarily in

more complex architectures. This pattern suggests that the underlying mechanisms of

D-ReLU might be better tuned for managing the higher complexities and intricacies

associated with deeper networks. Hence, assessing the networks’ architecture becomes

crucial when implementing robust training methods, as the choice between D-ReLU

and TRADES could significantly impact the effectiveness of model robustness against

adversarial attacks.

95



(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 5.13. Accuracy of several types of networks on clean CIFAR10 and adversarial
examples when adding the dense layer with a D-ReLU function before the output
layer and training them with augmented data samples generated from EDM.

96



(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 5.14. Accuracy of several types of networks on clean CIFAR100 and adversarial
examples when adding the dense layer with a D-ReLU function before the output
layer and training them with augmented data samples generated from EDM.
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Table 5.6. Accuracy metrics for multiple types of networks under various robust
training schemes with generated samples from EDM, evaluating on both clean

samples and adversarial examples generated by different whitebox attacks on the
CIFAR10 dataset. Note that the accuracy metrics in bold are the highest in a specific

model among the different training methods.

Model Training
Clean FGSM PGD APGDCE APGDDLR CWL2

% % % % % %

Dense
D-ReLU 48.47 46.87 48.03 45.57 45.83 47.33
TRADES 62.47 46.67 46.07 46.13 44.63 52.8

Shallow D-ReLU 67.97 66.57 67.07 65.4 65.4 66.97
CNN TRADES 74.3 59.03 57.93 57.93 56.53 63.6
Resnet D-ReLU 79.1 78.87 78.67 78.63 78.57 78.87
50 TRADES 80.6 66.77 65.97 65.5 64.03 70.2

Resnet D-ReLU 76.77 76.37 76.63 76.43 76.33 76.43
101 TRADES 77.97 63.43 61.93 61.87 59.77 67.33

Mobilenet D-ReLU 81.8 81.47 81.6 80.97 80.97 81.67
V2 TRADES 79.33 62.27 61.1 60.67 58.4 66.87

Inception D-ReLU 87.4 86.77 86.23 86.4 86.33 86.9
V3 TRADES 87.73 74.53 73.17 73.07 72.1 75.93

Table 5.7. Accuracy metrics for multiple types of networks under various robust
training schemes with generated samples from EDM, evaluating on both clean

samples and adversarial examples generated by different whitebox attacks on the
CIFAR100 dataset. Note that the accuracy metrics in bold are the highest in a

specific model among the different training methods.

Model Training
Clean FGSM PGD APGDCE APGDDLR CWL2

% % % % % %

Dense
D-ReLU 22.9 22.13 22.37 21.17 20.8 22.23
TRADES 36.03 23.93 23.57 23.47 22.13 26.97

Shallow D-ReLU 32.2 31.5 31.7 28.57 28.5 31.03
CNN TRADES 44.23 29.9 29.33 29.3 26.93 33.9
Resnet D-ReLU 53.83 52.8 53.03 52.13 52.5 52.77
50 TRADES 55.33 40.17 38.03 37.8 37.27 43.13

Resnet D-ReLU 44.5 43.9 44.6 43.47 43.5 44.2
101 TRADES 52.6 37.73 36.23 36.03 34.57 41.27

Mobilenet D-ReLU 56.57 55.57 55.77 54.67 54.87 55.7
V2 TRADES 51.27 38.57 37.1 36.73 35.5 40.9

Inception D-ReLU 63.47 61.43 61.07 60.4 60.7 61.33
V3 TRADES 62.9 48.33 46.5 46.23 45.67 49.43
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The graphical representation provided in Figure 5.15 presents a detailed

evaluation of the outcomes derived from implementing D-ReLU in conjunction with

EDM on the TinyImagenet dataset. Interestingly, the results indicate a noticeable

discrepancy in both performance and robustness compared to scenarios where solely

D-ReLU is deployed. This inferior performance observed in the D-ReLU combined

with EDM approach can be attributed to a crucial factor: the generated samples

utilized for augmentation originate from data points that are external to the test

dataset.

The discrepancy in results between the D-ReLU with EDM method and the

standalone D-ReLU approach on the TinyImagenet dataset underscores the significance

of the source of generated samples in the training process. By incorporating samples

that do not align closely with the original dataset, the model may encounter challenges

in effectively generalizing and adapting to the unseen data during inference. This

discrepancy highlights the critical aspect of data source relevance in the augmentation

process, emphasizing the importance of utilizing samples that are representative of

the original dataset to ensure optimal performance and robustness in model training.

Table 5.8 and A.7 present a detailed comparison of the D-ReLU and TRADES

training methodologies using samples generated from the EDM approach, particularly

within the context of the TinyImagenet dataset. Upon examining the results, it

becomes noticeable that the performance of D-ReLU in smaller network structures,

such as Dense and Shallow CNNs, is substantially deficient. When employing D-ReLU

in these compact network configurations, the results indicate a stark underperformance

compared to its counterpart, TRADES, which appears to better handle the constraints

and demands posed by smaller neural networks.

Conversely, in the context of more elaborate and deep network architectures, D-

Relu demonstrates a marked superiority, substantially outperforming TRADES. This

significant enhancement in performance with deep networks suggests that D-ReLU is

99



(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 5.15. Accuracy of several types of networks on clean TinyImagenet and
adversarial examples when adding the dense layer with a D-ReLU function before the
output layer and training them with augmented data samples generated from EDM.
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Table 5.8. Accuracy metrics for multiple types of networks under various robust
training schemes with generated samples from EDM, evaluating on both clean

samples and adversarial examples generated by different whitebox attacks on the
TinyImagenet dataset. Note that the accuracy metrics in bold are the highest in a

specific model among the different training methods.

Model Training
Clean FGSM PGD APGDCE APGDDLR CWL2

% % % % % %

Dense
D-ReLU 1.3 1.27 1.37 1.3 1.3 1.27
TRADES 2.4 1.07 1.07 1.03 0.8 1.77

Shallow D-ReLU 1.87 1.77 1.77 1.5 1.53 1.8
CNN TRADES 7.33 1.97 1.87 1.87 1.13 4.6
Resnet D-ReLU 29.63 24.43 27.8 21.47 21.6 26.43
50 TRADES 8.63 4.13 3.7 3.57 2.9 5.97

Resnet D-ReLU 17.6 9.4 12.6 4.53 5.13 12.23
101 TRADES 7.3 3.63 3.37 3.33 2.87 5.2

Mobilenet D-ReLU 42.43 24.43 28.63 20.93 21.63 29.2
V2 TRADES 18.13 8 7.03 6.63 5.2 12.63

Inception D-ReLU 35.63 10 9.73 3.33 4.33 16.9
V3 TRADES 12.2 5.57 5.07 5 4.3 7.63

particularly well-suited to leverage the complex structures and layers involved in such

models, potentially exploiting deeper features and more intricate decision boundaries

that deeper architectures facilitate.

Figure 5.16, 5.17 and 5.18 visualize the accuracy on the clean and adversarial

samples under several architectures on the CIFAR10, CIFAR100 and TinyImagenet

datasets. These results follow the same patterns as in the whitebox attacks.

Table 5.9 and A.8 present a comparative analysis between the D-ReLU and

TRADES methodologies, utilizing samples generated from the EDM approach while

assessing the performance under a blackbox attack across three distinct datasets:

CIFAR10, CIFAR100, and TinyImagenet. In smaller network configurations such as

those typified by the Dense and Shallow CNN architectures, the results observed from

a blackbox attack align closely with those obtained from whitebox attacks, indicating

a consistent behavior across different types of adversarial attacks in these simpler

101



(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 5.16. Accuracy of several types of networks on clean CIFAR10 and adversarial
examples generated by a blackbox attack (i.e., square attack) when adding the
dense layer with a D-ReLU function before the output layer and training them with
augmented data samples generated from EDM.
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(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 5.17. Accuracy of several types of networks on clean CIFAR100 and adversarial
examples generated by a blackbox attack (i.e., square attack) when adding the
dense layer with a D-ReLU function before the output layer and training them with
augmented data samples generated from EDM.
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(a) Dense (b) Shallow CNN

(c) ResNet50 (d) ResNet101

(e) MobilenetV2 (f) InceptionV3

Figure 5.18. Accuracy of several types of networks on clean TinyImagenet and
adversarial examples generated by blackbox attacks when adding the dense layer with
a D-ReLU function before the output layer and training them with augmented data
samples generated from EDM.
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network models. This consistency is crucial for validating the robustness of training

methodologies against varied adversarial strategies.

Table 5.9. Accuracy for multiple types of networks under various robust training
schemes with generated samples from EDM, evaluating on both clean samples and
adversarial examples generated by a blackbox attack (i.e. Square) on the CIFAR10,
CIFAR100 and TinyImagenet datasets. Note that the accuracy metrics in bold are

the highest in a specific model among the different training methods.

Model Training
CIFAR10 CIFAR100 TinyImagenet

Clean Square Clean Square Clean Square
% % % % % %

Dense
D-ReLU 52.6 48.77 22.9 12.4 1.3 0.7
TRADES 62.47 47.23 36.03 23.6 2.4 0.93

Shallow D-ReLU 67.97 52.17 35.3 14.43 2.67 0.5
CNN TRADES 74.3 60.9 44.23 31.2 7.33 3.13
Resnet D-ReLU 79.1 64.93 53.83 33.03 32.27 14.37
50 TRADES 80.6 67.9 55.33 40.07 7.33 4.7

Resnet D-ReLU 76.77 59.5 47.43 31.3 17.6 5.7
101 TRADES 77.97 64.53 52.6 37.97 7.3 3.87

Mobilenet D-ReLU 81.8 62.33 56.57 31.27 42.43 18.93
V2 TRADES 79.33 64.53 51.27 37.97 18.13 9.9

Inception D-ReLU 87.4 74.73 63.47 42.37 35.63 14.93
V3 TRADES 87.73 76.63 62.9 48.8 12.2 6.63

Expanding the evaluation to deeper network architectures, particularly

within the CIFAR10 and CIFAR100 datasets, D-ReLU demonstrates commendable

competitiveness with TRADES. This indicates that D-ReLU can effectively leverage

the complexities inherent in larger and deeper models to enhance robustness against

blackbox attacks, thereby suggesting its suitability in scenarios where maintaining

integrity against external manipulations in data is critical.

Interestingly, in the TinyImagenet dataset, which typically requires handling

a more extensive and complex set of classes and image variations, D-ReLU not only

competes well but also noticeably outperforms TRADES. This superior performance

underscores D-ReLU’s potential advantage in more challenging and diverse datasets
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where the depth and complexity of the network can be turned into a strategic asset to

counter adversarial attacks more effectively.

5.4.2 Discussion

In the context of the CIFAR10 and CIFAR100 datasets, the integration

of generated samples from the EDM approach appears to notably enhance the

performance and robustness of both the D-ReLU and TRADES training methodologies.

This improvement is primarily due to the diversification of data samples provided

by EDM, which broadens the array of scenarios that the models encounter during

training. Such enhanced variety promotes better generalization capabilities within

machine learning models, equipping them to handle a wider range of inputs and

reducing overfitting on the training data.

Furthermore, D-ReLU demonstrates a capacity to surpass TRADES in

several state-of-the-art (SOTA) networks deployed on these datasets. This superior

performance of D-ReLU suggests that its mechanisms might be more effectively

aligned with the innate characteristics and challenges presented by the CIFAR10 and

CIFAR100 datasets when combined with the enriched diversity of training instances

generated through EDM.

However, the scenario shifts quite dramatically when considering the Tiny-

Imagenet dataset. Both D-ReLU and TRADES exhibit significantly diminished

performance compared to methodologies that do not employ EDM-generated samples.

The core issue stems from the EDM’s inability to produce new samples that accurately

reflect the distribution inherent to the test dataset of TinyImagenet. The discrepancy

between the training data augmented by EDM and the actual data distribution en-

countered in testing hinders the model’s ability to generalize effectively, resulting in

poorer performance.

Despite these challenges with the TinyImagenet dataset, it is notable that

D-ReLU still maintains a considerable performance edge over TRADES. This indicates
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that while the overall effectiveness of both methodologies is compromised by the

limitations of EDM in this context, D-ReLU’s approach still manages to adapt more

successfully than TRADES, leveraging its strengths to achieve better results even

under less-than-ideal conditions.

Such findings underscore the importance of contextual suitability of data

augmentation techniques like EDM in training robust machine learning models. While

EDM proves advantageous in datasets like CIFAR10 and CIFAR100 by enhancing

model generalization through diverse examples, its effectiveness is contingent upon

the relevance and fidelity of the generated samples to the test environments. Tailoring

the choice of augmentation strategies to the specific characteristics of the dataset

is crucial in optimizing model performance and robustness. This nuanced approach

to training can significantly influence the successful deployment of machine learning

models across various real-world applications.

5.5 Perturbation Bound Generalization

This section demonstrates how D-ReLU and other baseline methods perform

across various perturbation bounds. We choose APGE CE to be the adversarial attack

in this experiment because it is the most widely used and one of the strongest attacks.

5.5.1 Experimental Results

Figure 5.19 presents the accuracy of various approaches, including the baselines

and our proposed methods, on the CIFAR10 dataset under the APGD CE attack

with different levels of perturbation. For a small network like Shallow CNN, our

approaches, D-ReLU and D-ReLU with EDM, outperform the other baselines under

very small perturbations, with the exception of TRADES-5 with EDM. However, as

the perturbation level increases, D-ReLU and D-ReLU with EDM consistently surpass

all the baselines, demonstrating their superior robustness.
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(a) Shallow CNN
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(b) MobilenetV2
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(c) InceptionV3

Figure 5.19. Accuracy of several approaches on the CIFAR10 dataset under the
APGD CE attack with various perturbation bounds where mReLU is D-ReLU

Figures 5.20 and 5.21 depict similar results for the CIFAR100 and TinyImagenet

datasets, respectively. We observe a comparable trend to that of the CIFAR10

dataset, where D-ReLU and D-ReLU with EDM exhibit enhanced performance over

the baselines. Although our approaches show slightly diminished performance on

larger datasets, they still generalize well across different perturbation bounds. This

consistency across varying perturbation levels highlights our methods’ robustness and

adaptability.
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(b) MobilenetV2
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Figure 5.20. Accuracy of several approaches on the CIFAR100 dataset under the
APGD CE attack with various perturbation bounds where mReLU is D-ReLU.

5.5.2 Discussion

Our approaches, D-ReLU and D-ReLU with EDM, demonstrate significant

improvements in accuracy and robustness compared to baseline methods across

different datasets and perturbation levels. These results indicate the potential of our

techniques to enhance the reliability of machine learning models in adversarial settings,

particularly in image classification tasks. Our methods maintain high accuracy under

small perturbations and exhibit strong generalization capabilities as the perturbation

bound increases, proving their effectiveness in real-world applications where robustness

is critical.

109



0.000 0.005 0.010 0.015 0.020 0.025 0.030
Perturbation Bound

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
Ro

bu
st

 A
cc

ur
ac

y
mReLU
AT
TRADES_1
TRADES_6
mReLU_EDM
TRADES_5_EDM
TRADES_8_EDM

(a) Shallow CNN

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Perturbation Bound

0.0

0.1

0.2

0.3

0.4

Ro
bu

st
 A

cc
ur

ac
y

mReLU
AT
TRADES_1
TRADES_6
mReLU_EDM
TRADES_5_EDM
TRADES_8_EDM

(b) MobilenetV2
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Figure 5.21. Accuracy of several approaches on the TinyImagenet dataset under the
APGD CE attack with various perturbation bounds where mReLU is D-ReLU.

5.6 Limitations

Despite the successful results of D-ReLU, this activation function may be more

difficult than ReLU to harness because it has two hyperparameters. The first one

is the balancer that was tuned in our experiments. Noticeably, the best balancer

in the CIFAR10 dense network is different from the CIFAR10 mobilenetv2 network.

Therefore, it is tricky to find the best balancer. Moreover, the second hyperparameter

is the initial max value of D-ReLU. We set it to 100 for the MNIST, CIFAR10,

CIFAR100 and TinyImagenet datasets. It is clear that the results of our approach on

the TinyImagenet are not very satisfying due to the large values before the D-ReLU

layer, and it causes several areas of zero gradients for training. Therefore, in large
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datasets, we may need to set it to a higher value. However, the results with the initial

max value of 100 are not very bad. It is noteworthy that if this value is ridiculously

high, this training time will significantly increase because the optimizer takes much

more time to reduce this max value.

5.7 Conclusion

In this chapter, we introduced the D-ReLU function to overcome the

gradient vanishing issue observed with S-ReLU. We conducted various experiments

demonstrating that D-ReLU enhances adversarial robustness in larger datasets than

MNIST. The results indicate that D-ReLU not only performed well but, in some

instances, surpassed or matched the performance of TRADES under both whitebox

and blackbox attack scenarios. Also, our statistical tests on the CIFAR10 dataset

show that D-ReLU significantly outperforms the other baselines.

Moreover, even when testing with augmented samples from EDM, D-ReLU

continued to show superior performance or remained competitive with TRADES.

Notably, D-ReLU exhibited robust generalization across various perturbation bounds,

a feature that TRADES struggled with. Integrating D-ReLU into a machine learning

model offers a favorable balance between performance and robustness, making it a

compelling option for enhancing model resilience against adversarial attacks.
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CHAPTER SIX

Conclusion

In this final chapter, we provide a comprehensive summary and discussion

of the conclusions derived from this dissertation. Throughout this chapter, we will

meticulously outline various key aspects of the research, including its intellectual merit,

broader impact, significant contributions, and potential avenues for future work.

6.1 Intellectual Merit

This research sought to make significant advancements in the field of adversarial

machine learning by focusing on innovation at the architecture level, specifically

through the customization of Rectified Linear Unit (ReLU) activation functions.

Our work set out to rigorously explore and define the most effective methods for

tailoring activation functions and determining the optimal layers for their application.

The principal enhanced the robustness of models against adversarial attacks while

maintaining, or even improving, their performance.

To achieve this, our research systematically investigated S-ReLU, assessing

where these modifications should be applied within the neural network architecture

to best counteract adversarial manipulations without degrading performance on non-

adversarial inputs. We employ a comprehensive evaluation framework that tested

the modified architectures with S-ReLU and D-ReLU against various sophisticated

adversarial attacks, including the Fast Gradient Sign Method (FGSM), Projected

Gradient Descent (PGD), Auto PGD (APGD) and the Carlini and Wagner Attack

(C&W). The impact of these customizations was quantitatively analyzed using three

critical metrics: standard accuracy, robust accuracy, and attack success rates.

Moreover, this research benchmarked the customized models against existing

defense mechanisms such as adversarial training and data augmentation. Through
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these comparative analyses, we illustrated the relative efficacy and practicality of our

proposed approach in a real-world adversarial context.

To underpin the empirical findings, the research integrated a thorough

theoretical analysis, providing robust mathematical proof of the enhanced security

features. This theoretical documentation demonstrated how and why S-ReLU and D-

ReLU led to increased resistance to adversarial interventions compared to conventional

activation models.

This project intended not merely to adapt existing models for greater security

but to pioneer a methodological shift in how machine learning architectures could

be intrinsically designed for resilience against evolving adversarial threats. Through

both rigorous empirical testing and theoretical grounding, this research contributed

substantially to the robustness of machine learning systems, aiming to set a new

standard in the field.

6.2 Broader Impact

Our research was substantial, offering a transformative solution to the problem

of adversarial vulnerability in machine learning systems by customizing activation

functions within the model architecture. This enhancement in security was designed

to be achieved without significantly affecting the model’s performance on clean, non-

adversarial samples. This was a critical advantage for machine learning practitioners

who needed to ensure that the pursuit of robustness did not come at the expense of

efficiency and overall model accuracy.

The potential applications of this technology extended far beyond academic

research; it had practical, real-world implications across various sectors utilizing

artificial intelligence. Industries ranging from finance and healthcare to autonomous

vehicle technology and cybersecurity greatly benefited from integrating our findings

into their AI development cycles. By implementing our advanced techniques, these
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sectors were able to enhance the reliability and security of their systems against

adversarial attacks, thus safeguarding sensitive data and critical operational functions.

Furthermore, our approach was expected to set a significant precedent for future

research and development in adversarial robustness. By providing a versatile framework

that could be adapted to diverse AI models and applications, our methodology promised

to serve as a strong baseline for ongoing efforts in the mitigation of adversarial examples.

Researchers and developers could leverage our proven strategies to explore further

innovations in the field, potentially leading to even more sophisticated defenses against

increasingly complex adversarial attacks.

At last, the broader impacts of this research were multi-faceted, providing not

only a practical method for enhancing the adversarial robustness of machine learning

models but also contributing to the elevation of standards for the trustworthiness and

security of AI systems in industry applications. This work supported the important

goal of advancing technology that was both powerful and resistant to evolving threats,

thereby fostering a safer and more reliable digital future.

6.2.1 Publications

This research has yielded significant results, evidenced by the production of

a publication, which highlights the multitude of applications as well as theoretical

advancements. Below, we outline the publications that have been produced and

discuss potential future works. First, we list publications that are closely related to

this dissertation here:

• “Is ReLU Adversarially Robust?”, Status: Published at the LatinX AI

Workshop at ICML in 2023.

• “Dynamic-Max-Value ReLU Functions for Improving Adversarial Robustness

of Deep Learning Models”, Status: Drafted for Transactions on Machine

Learning Research (TMLR).
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• “Adversarial Defenses for Convolutional Neural Networks in Image Classifica-

tion Task: A Survey”, Status: Drafted for Transactions on Machine Learning

Research (TMLR).

Moreover, we have other peer-reviewed and published research that was

produced on adjacent topics to this dissertation but strongly related to the focus area

of adversarial robustness and safety:

• “Evaluating Accuracy and Adversarial Robustness of Quanvolutional Neural

Networks”, Status: Published at International Conference on Computational

Science and Computational Intelligence (CSCI) in 2021.

• “Adversarial Training Negatively Affects Fairness”, Status: Published at

International Conference on Computational Science and Computational

Intelligence (CSCI) in 2021.

• “Enhancing Adversarial Examples on Deep Q Networks with Previous

Information”, Status: Published at IEEE Symposium Series on Computational

Intelligence (SSCI) in 2021.

• “Evaluation of Adversarial Attacks Sensitivity of Classifiers with Occluded

Input Data:, Status: Published at Neural Computing and Applications in

2022.

• “On Adversarial Examples for Text Classification by Perturbing Latent

Representations”, Status: Published at the LatinX AI Workshop at NeurIPS

in 2022.

• “Evaluating Robustness of Reconstruction Models with Adversarial Networks”,

Status: Published at Procedia Computer Science in 2023.

6.3 Contributions

This dissertation achieves the critical need for improved adversarial defenses in

machine learning by thoroughly examining the “capping technique” applied to ReLU

functions. Through a systematic exploration and application of modifications to this
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essential activation function, this research aims to bridge the current gap in robust

defensive strategies against adversarial attacks.

6.3.1 Development of S-ReLU

The first significant part of our investigation focuses on the development and

analysis of S-ReLU. We begin with a detailed theoretical analysis of S-ReLU to

demonstrate its capacity to mitigate the effects of adversarial perturbations more

effectively than the traditional ReLU function. This theoretical foundation supports

the premise that S-ReLU can provide better protection against adversarial interference

within neural network models.

Following the theoretical groundwork, we embark on empirical testing to

validate the robustness of the S-ReLU. Through rigorous experiments, we establish

that S-ReLU achieves superior robustness compared to conventional ReLU functions.

Further, we benchmark S-ReLU against current state-of-the-art defense mechanisms,

including methods like adversarial training, to highlight its enhanced defensive

capabilities. These comparisons are critical in positioning S-ReLU as a formidable

strategy against adversarial attacks.

6.3.2 Development of D-ReLU

Building upon the successes of S-ReLU, we further refine this approach by

developing D-ReLU. The modification involves setting the maximum values of S-

ReLU to align with certain parameters in machine learning models and adjusting

the loss function to minimize these maximum values. This adjustment is based on

the insights garnered from the theoretical analysis of S-ReLU, aiming to enhance the

generalizability of the function across larger datasets.

To empirically substantiate the effectiveness of D-ReLU, we conduct an array

of experimental evaluations, including white-box attacks, black-box scenarios, as well

as tests involving data augmentation and perturbation-bound generalization. These
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extensive experiments are designed to demonstrate how D-ReLU not only stands

its ground but significantly outperforms contemporary state-of-the-art techniques in

various aspects.

Overall, the research embodied in this dissertation provides a comprehensive

exploration and enhancement of ReLU capping techniques, introducing innovative

defenses that significantly bolster the adversarial robustness of machine learning

systems. By advancing the understanding and application of S-ReL and D-ReLU, this

work contributes valuable methodologies to the field of adversarial machine learning,

paving the way for more secure AI implementations.

6.4 Future Works

The scope of this study, while comprehensive, has illuminated numerous areas

ripe for further exploration. As highlighted in the discussions of limitations in

previous chapters, the utilization of Dynamic-ReLU (D-ReLU) introduces additional

hyperparameters that could significantly affect the performance and efficacy of machine

learning models. Among these, factors like the initial maximum value of D-ReLU

before training and the balancer settings are pivotal.

In the course of this dissertation research, considerable attention was devoted

to examining the role of the balancer parameter. Our findings indicate that a balancer

value of 1 yields optimal results in a multitude of scenarios. This insight not only

validates our initial hypotheses but also enhances our understanding of the dynamic

interactions within the activation function under adversarial conditions.

However, one aspect that has not been thoroughly investigated is the impact

of the initial maximum value of D-ReLU. This parameter represents a fundamental

aspect of how the D-ReLU function initially interacts with the incoming data, possibly

affecting the learning process and the model’s ultimate performance. Recognizing this

gap, future work will be directed at extensively exploring various settings of the initial

max value.
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We plan to design and implement a series of controlled experiments aimed

at systematically evaluating how different initial maximum settings influence the

performance and robustness of machine learning models, especially when applied

to large-scale datasets. By manipulating this parameter, we aim to uncover deeper

insights into how subtle changes can improve or impair a model’s ability to withstand

adversarial attacks, thereby refining the robustness of the activation function.

The anticipated outcome of these future investigations is a more nuanced

understanding of the relationship between hyperparameters of the D-ReLU and the

overall efficacy of the model. This will not only contribute to the academic literature

but also provide practical guidelines that can be applied to enhance the security

and reliability of machine learning systems in real-world applications. Through

rigorous experimentation and analysis, we believe these efforts will pave the way

for the development of more sophisticated, adaptive, and resilient machine learning

architectures.
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APPENDIX A

Table A.1, A.2, A.3, A.4, A.5, A.6, A.7 and A.8 are the rankings corresponding

to the following tables, respectively: Table 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9.

Table A.1. Ranking based on the accuracy metrics for multiple types of networks
under various robust training schemes, evaluating on both clean samples and

adversarial examples generated by different attacks on the CIFAR10 dataset. Note
that APCE is APGDCE, APDLR is APGDDLR, TRADES-k means the TRADES
approach with β = k, and D-ReLU-k means the D-ReLU approach with m = k.

Model Training Clean FGSM PGD APCE APDLR CWL2 µ̄

Dense

AT 1 2 2 2 2 2 1.8
TRADES-1 2 3 3 3 3 3 2.8
TRADES-6 4 1 1 1 1 1 1.5
D-ReLU-10−7 3 4 4 4 4 4 3.8

AT 3 2 2 2 2 2 2.2
Shallow TRADES-1 1 3 3 3 3 3 2.7
CNN TRADES-6 4 1 1 1 1 1 1.5

D-ReLU-100 2 4 4 4 4 4 3.7
AT 2 2 3 3 2 2 2.3

ResNet TRADES-1 3 3 4 4 3 3 3.5
50 TRADES-6 4 2 2 2 4 3 2.8

D-ReLU-104 1 1 1 1 1 1 1.0
AT 3 3 2 2 2 3 2.5

ResNet TRADES-1 2 1 4 4 4 1 2.7
101 TRADES-6 4 2 3 3 3 4 3.2

D-ReLU-104 1 4 1 1 1 2 1.7
AT 2 3 3 3 3 3 2.7

Mobilenet TRADES-1 3 4 4 4 4 4 3.8
V2 TRADES-6 4 2 2 2 2 2 2.3

D-ReLU-102 1 1 1 1 1 1 1.0
AT 2 3 2 2 2 2 2.2

Inception TRADES-1 4 4 4 4 4 4 4.0
V3 TRADES-6 3 4 3 3 3 3 3.2

D-ReLU-102 1 1 1 1 1 1 1.0
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Table A.2. Ranking based on the accuracy metrics for multiple types of networks
under various robust training schemes, evaluating on both clean samples and

adversarial examples generated by different attacks on the CIFAR100 dataset. Note
that APCE is APGDCE, APDLR is APGDDLR, the accuracy metrics in bold are the
highest in a specific model among the different training methods, TRADES-k means
the TRADES approach with β = k, and D-ReLU-k means the D-ReLU approach

with m = k.

Model Training Clean FGSM PGD APCE APDLR CWL2 µ̄

Dense

AT 1 2 2 2 2 2 1.8
TRADES-1 2 4 4 4 4 4 3.7
TRADES-6 3 3 3 3 3 3 3.0
D-ReLU-10−1 4 1 1 1 1 1 1.5

AT 1 2 2 2 2 2 1.8
Shallow TRADES-1 3 4 4 4 4 4 3.8
CNN TRADES-6 2 3 3 3 3 3 2.8

D-ReLU-1 4 1 1 1 1 1 1.5
AT 3 3 2 2 3 3 2.7

ResNet TRADES-1 2 4 4 4 4 4 3.7
50 TRADES-6 4 2 3 3 2 2 2.7

D-ReLU-102 1 1 1 1 1 1 1.0
AT 3 3 2 2 2 3 2.5

ResNet TRADES-1 4 4 4 4 4 2 3.7
101 TRADES-6 2 2 3 3 3 3 2.7

D-ReLU-1 1 1 1 1 1 1 1.0
AT 2 2 3 3 3 2 2.5

Mobilenet TRADES-1 3 3 4 4 4 4 3.7
V2 TRADES-6 4 4 2 2 2 3 2.8

D-ReLU-1 1 1 1 1 1 1 1.0
AT 3 3 3 3 2 3 2.83

Inception TRADES-1 2 2 4 4 4 2 3.0
V3 TRADES-6 4 4 2 2 3 4 3.2

D-ReLU-102 1 1 1 1 1 1 1.0
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Table A.3. Ranking based on the accuracy metrics for multiple types of networks
under various robust training schemes, evaluating on both clean samples and

adversarial examples generated by different attacks on the TinyImagenet dataset.
Note that APCE is APGDCE, APDLR is APGDDLR, the accuracy metrics in bold are
the highest in a specific model among the different training methods, TRADES-k
means the TRADES approach with β = k, and D-ReLU-k means the D-ReLU

approach with m = k.

Model Training Clean FGSM PGD APCE APDLR CWL2 µ̄

Dense

AT 2 3 2 2 3 2 2.3
TRADES-1 3 4 3 3 4 4 3.5
TRADES-6 1 2 2 2 2 3 2.0
D-ReLU-10−1 4 1 1 1 1 1 1.5

AT 1 3 3 3 3 2 2.5
Shallow TRADES-1 2 4 4 4 4 4 3.7
CNN TRADES-6 3 2 2 2 2 1 2.0

D-ReLU-1 4 1 1 1 1 3 1.8
AT 3 3 4 4 3 3 3.3

ResNet TRADES-1 1 2 3 3 2 1 2.0
50 TRADES-6 2 4 2 2 4 2 2.7

D-ReLU-1 4 1 1 1 1 4 2.0
AT 3 4 4 4 4 4 3.8

ResNet TRADES-1 1 3 3 3 2 1 2.2
101 TRADES-6 2 1 2 1 3 2 1.8

D-ReLU-1 4 2 1 2 1 3 2.2
AT 2 3 3 3 3 2 2.7

Mobilenet TRADES-1 3 4 4 4 4 4 3.8
V2 TRADES-6 4 2 2 2 2 3 2.5

D-ReLU-1 1 1 1 1 1 1 1.0
AT 4 4 4 4 4 4 4.0

Inception TRADES-1 1 1 3 3 1 1 1.7
V3 TRADES-6 3 2 1 1 2 2 1.8

D-ReLU-1 2 3 2 2 3 3 2.5
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Table A.4. Ranking based on the accuracy metrics for multiple types of networks
under various robust training schemes, evaluating on both clean samples and

adversarial examples generated by a blackbox attach (i.e. Square) on the CIFAR10,
CIFAR100 and TinyImagenet datasets. Note that Sq means the square attack, the
accuracy metrics in bold are the highest in a specific model among the different

training methods. Note that TRADES-k means the TRADES approach with β = k.

Model Training
CIFAR10 CIFAR100 TinyImagenet µ̄
Clean Sq Clean Sq Clean Sq

Dense
TRADES-1 1 2 2 2 2 2 1.8
TRADES-6 2 1 1 1 1 1 1.2
D-ReLU 3 3 3 3 3 3 3.0

Shallow CNN
TRADES-1 2 2 2 2 2 2 2.0
TRADES-6 3 1 1 1 1 1 1.3
D-ReLU 1 3 3 3 3 3 2.7

Resnet50
TRADES-1 2 2 2 2 1 1 1.7
TRADES-6 3 1 3 1 2 2 2.0
D-ReLU 1 3 1 3 3 3 2.3

Resnet101
TRADES-1 1 2 1 2 1 1 1.3
TRADES-6 3 3 3 3 2 2 2.7
D-ReLU 2 1 2 1 3 3 2.0

MobilenetV2
TRADES-1 2 3 2 3 1 2 2.2
TRADES-6 3 2 3 2 2 1 2.2
D-ReLU 1 1 1 1 3 3 1.7

InceptionV3
TRADES-1 2 2 1 2 1 1 1.5
TRADES-6 3 3 3 3 2 2 2.7
D-ReLU 1 1 2 1 3 3 1.8
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Table A.5. Ranking based on the accuracy metrics for multiple types of networks
under various robust training schemes with generated samples from EDM, evaluating
on both clean samples and adversarial examples generated by different whitebox

attacks on the CIFAR10 dataset. Note that APCE is APGDCE, APDLR is APGDDLR,
the accuracy metrics in bold are the highest in a specific model among the different

training methods.

Model Training Clean FGSM PGD APCE APDLR CWL2 µ̄

Dense
D-ReLU 2 1 1 2 1 2 1.5
TRADES 1 2 2 1 2 1 1.5

Shallow D-ReLU 2 1 1 1 1 1 1.2
CNN TRADES 1 2 2 2 2 2 1.8
Resnet D-ReLU 2 1 1 1 1 1 1.2
50 TRADES 1 2 2 2 2 2 1.8

Resnet D-ReLU 2 1 1 1 1 1 1.2
101 TRADES 1 2 2 2 2 2 1.8

Mobilenet D-ReLU 1 1 1 1 1 1 1.0
V2 TRADES 2 2 2 2 2 2 2.0

Inception D-ReLU 2 1 1 1 1 1 1.2
V3 TRADES 1 2 2 2 2 2 1.8

Table A.6. Ranking based on the accuracy metrics for multiple types of networks
under various robust training schemes with generated samples from EDM, evaluating
on both clean samples and adversarial examples generated by different whitebox

attacks on the CIFAR100 dataset. Note that APCE is APGDCE, APDLR is
APGDDLR, the accuracy metrics in bold are the highest in a specific model among

the different training methods.

Model Training Clean FGSM PGD APCE APDLR CWL2 µ̄

Dense
D-ReLU 2 2 2 2 2 2 2.0
TRADES 1 1 1 1 1 1 1.0

Shallow D-ReLU 2 1 1 1 1 1 1.2
CNN TRADES 1 2 2 2 2 2 1.8
Resnet D-ReLU 2 1 1 1 1 1 1.2
50 TRADES 1 2 2 2 2 2 1.8

Resnet D-ReLU 2 1 1 1 1 1 1.2
101 TRADES 1 2 2 2 2 2 1.8

Mobilenet D-ReLU 1 1 1 1 1 1 1.0
V2 TRADES 2 2 2 2 2 2 2.0

Inception D-ReLU 1 1 1 1 1 1 1.0
V3 TRADES 2 2 2 2 2 2 2.0
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Table A.7. Ranking based on the accuracy metrics for multiple types of networks
under various robust training schemes with generated samples from EDM, evaluating
on both clean samples and adversarial examples generated by different whitebox
attacks on the TinyImagenet dataset. Note that APCE is APGDCE, APDLR is

APGDDLR, the accuracy metrics in bold are the highest in a specific model among
the different training methods.

Model Training Clean FGSM PGD APCE APDLR CWL2 µ̄

Dense
D-ReLU 2 1 1 1 1 2 1.3
TRADES 1 2 2 2 2 1 1.7

Shallow D-ReLU 2 2 2 2 1 2 1.8
CNN TRADES 1 1 1 1 2 1 1.2
ResNet D-ReLU 1 1 1 1 1 1 1.0

50 TRADES 2 2 2 2 2 2 2.0
ResNet D-ReLU 1 1 1 1 1 1 1.0
101 TRADES 2 2 2 2 2 2 2.0

Mobilenet D-ReLU 1 1 1 1 1 1 1.0
V2 TRADES 2 2 2 2 2 2 2.0

Inception D-ReLU 1 1 1 2 1 1 1.2
V3 TRADES 2 2 2 1 2 2 1.8

Table A.8. Ranking based on the accuracy metrics for multiple types of networks
under various robust training schemes with generated samples from EDM, evaluating
on both clean samples and adversarial examples generated by a blackbox attack (i.e.
Square) on the CIFAR10, CIFAR100 and TinyImagenet datasets. Note that the
accuracy metrics in bold are the highest in a specific model among the different

training methods.

Model Training CIFAR10 CIFAR100 TinyImagenet µ̄
Clean Square Clean Square Clean Square

Dense
D-ReLU 2 1 2 2 1 1 1.5
TRADES 1 2 1 1 2 2 1.5

Shallow D-ReLU 2 2 2 2 2 2 2.0
CNN TRADES 1 1 1 1 1 1 1.0
Resnet D-ReLU 2 2 2 2 1 1 1.7
50 TRADES 1 1 1 1 2 2 1.3

Resnet D-ReLU 2 2 2 2 1 1 1.7
101 TRADES 1 1 1 1 2 2 1.3

Mobilenet D-ReLU 1 2 1 2 1 1 1.3
V2 TRADES 2 1 2 1 2 2 1.7

Inception D-ReLU 2 2 1 2 1 1 1.5
V3 TRADES 1 1 2 1 2 2 1.5
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