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Abstract. Predicting if freshmen students will drop out of college or
transfer to another is often difficult due to limited and anomalous data.
This paper explores using Generative Adversarial Networks (GANs) to
learn the general features of student data and uses it to produce pre-
dictions with higher accuracy and lower false positive rates than neural
networks trained with traditional techniques. Here we examine the dif-
ferences between a classifier’s latent space when it is trained with a GAN
architecture versus traditionally for predicting if a freshman student will
leave Marist College within their first year. Our experimental results sug-
gest that GANs are an alternative to training neural models for student
dropout/transfer prediction.
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1 Introduction

Most colleges want to retain the number of freshman students enrolled and do
what they can to prevent them from leaving within the first year. We will use the
word ‘attrition’ to describe students who have either dropped out or transferred
to another college. A strong tool in lowering the amount of student attrition is
the ability to predict who will leave as well as determine a trend or commonality
between those who do leave. An inevitable problem with developing a good
manner of prediction is the small amount of data that is available as a result of
a typically small incoming class and the even smaller amount of those who leave.
In other words, predicting student attrition in the first year can be proposed as
an anomaly detection problem with a very limited amount of data to use in
creating prediction models. In this paper, the freshman population of Marist
College of years 2016 and 2017 will be examined using a GAN architecture in
order to predict attrition in 2018. First, the neural network model learns the
characteristics of a first-year student through adversarial learning. Second, the
model is fine-tuned to classify students as either those who will stay or those
who will leave. Third, the latent space of the layer directly before the final
one that gives the final prediction is inspected for comparing three versions
of the model. The versions are the following: The model traditionally trained
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without a GAN (the control), one adversarially trained without tuning, and
one adversarially trained with tuning. The hypothesis is that the model that is
adversarially trained with tuning will have a latent space more representative of
the freshman population producing a higher accuracy when predicting student
attrition.

The following section will provide a brief background of the concepts in this
paper. Following this section will be a description of the methodology used to test
the models and how the models were built. The next section will be an overview
of the three experiments performed, their accompanying diagrams, and a short
explanation of the results. Finally, the last section will be a concluding paragraph
on the findings of the experiments.

2 Background and Other Work

It is important to note this paper serves as an extension of research carried out
by Dr. Eitel Lauria and colleagues in which the same population of students
was used to predict attrition using multiple machine learning algorithms, the
primary one being XGBoost [3]. Dr. Lauria’s research produced models with
accurate predictions of student attrition despite minimal amounts of data. This
research extends the knowledge of neural models for student attrition introduced
by E. Lauria et al [8].

Current insights in GAN architectures originated in a paper by Dr. Ian Good-
fellow et al. where the concept of a discriminator model and generator model
playing a minimax game first arose [5]. Their paper shows the following value
function for how the GAN operates:

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (1)

In the value function V (D,G), G is a differential function representing the gen-
erator model that takes noise input pz(z) and maps it to a data space. This data
space is meant to represent possible values that can mimic variables pdata (x),
real data, when inputted into another function represented by the discriminator
model and denoted as D that outputs a prediction of whether the input was
generated or not. D is trained to maximize the probability of correctly labeling
generated and real samples while G is trained to minimize log(1−D(G(z))), or
lower the probability of D predicting correctly.

Shortly after Dr. Goodfellow’s paper, the structure of the GAN training
python code and the calculation of both the Wasserstein loss and gradient
penalty for the training of the discriminator originated in an experiment from a
paper by Martin Arjovsky, Soumith Chintala, and Léon Bottou [1]. The formula
for the Wasserstein distance which is described in further detail in the referenced
paper, is the following:

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [‖x− y‖]. (2)
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Fig. 1: Discriminator Architecture Diagram

In the Wasserstein distance equation, Π(Pr,Pg) represents the set of all joint
distributions γ(x, y) with marginals Pr and Pg respectively. In order to transform
distributions Pr into distribution Pg, γ(x, y) denotes the amount of ‘mass’ to be
transported from x to y while the Wasserstein distance describes the ‘cost’ of
the optimal method of transport.

The next section will describe the methodology for building the discriminator
and generator models as well as how the Wasserstein distance equation will be
utilized.

3 Methodology

The main pieces of GAN architectures are the discriminator and generator mod-
els as shown in Equation 2. These models will be explained in this section in
detail.

3.1 Discriminator

The discriminator is a neural model composed of 12 layers as shown in Figure
1. These layers are: dropout, ReLU, batch normalization, tanh, and sigmoid.
First, in order to prevent any one feature of the input data becoming heavily
weighted, the dropout layer disconnects about 20% of the features randomly on
each training step [10]. Second, batch normalization layers are placed intermit-
tently to prevent the outputs of the ReLU layers from becoming too large and
slowing or preventing convergence [4]. Third, the Python implementation of our
model is based on Keras’ functional model due to its ability to work with the
tanh layer separately as this will serve as a view into the latent space of the
model directly before an output is computed. Fourth, the discriminator’s loss is
based on weighing two Wasserstein loss calculations with a weight of one and a
gradient penalty with a weight of ten.

3.2 Generator

The generator is a sequential model made up of 9 layers with a similar layout
to the discriminator in which it has ReLU layers with intermittent batch nor-
malization layers and an output consisting of a sigmoid layer as shown in Figure
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Fig. 2: Generator Architecture Diagram

2. The most notable difference the generator has from the discriminator is the
nature of its input which is 12 normally distributed random values between 0
and 1. These values are ‘noise’ or values within a latent dimension defining dif-
ferent vectors that will eventually become generated data mimicking the input
to the discriminator. This latent dimension should not be confused with the la-
tent space referenced in this paper describing the output of the tanh layer in
the discriminator. Furthermore, the generator’s loss function is simpler than the
discriminator’s as it only consists of a single Wasserstein calculation.

The following section will present the three experiments conducted using the
aforementioned models in detail as well as expound on the results of each.

4 Experiments and Results

Before getting into the details of the experiment, let us take a look at the input
data. Table 1 describes the features and corresponding data types.

Some of the most noteworthy predictors in Table 1 are the following: ‘HS-
GPA’, ‘DistanceInMiles’, ‘MeritScholAmt’, and ‘APCourses’. ‘HSGPA’ is a stu-
dent’s GPA from high school measured with a 4.0 scale. ‘DistanceInMiles’ is
the distance from a student’s hometown to the college measured in miles. ‘Mer-
itScholAmt’ is the amount of money awarded to the student through a merit
scholarship. Finally, the ‘APCourses’ feature is a binary value where 1 means
the student has taken AP courses and 0 means they have not. It is important
to note that the majority of the aforementioned predictors relate to how well
the student has done academically in high school. Furthermore, the ‘DistanceIn-
Miles’ predictor may indirectly relate to the student’s emotional well-being as a
larger distance away from their hometown may limit visits home. However, due
to the difficulty in measuring the importance of predictors in a neural network,
the speculation on the impact each feature has on predicting student attrition
is rooted in the work by E. Lauria et al. where many of the same predictors
are used and measured based on their importance in multiple machine learning
models [8].

Besides the most important predictors, it is also imperative to point out the
most ’noisy’ predictors, or those that have a large number of null values, which
are the following: ‘DistanceInMiles’, ‘OccupantsBuilding’, ‘OccupantsRoom’, and
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Table 1: Description of Predictors

Feature Description Data Type

EarlyAction Applied for early action Binary (1/0)
EarlyDecision Applied for early decision Binary (1/0)
MeritScholAmt Merit scholarship amount awarded Binary (1/0)
FinAidRating Financial aid rating Categorical encoded

as binary (1,0)
HSTier High School Tier Categorical encoded

as binary (1,0)
Foreign Foreign student Binary (1/0)
FAFSA Applied for Federal Student Aid Binary (1/0)
APCourses Took AP courses Binary (1/0)
Sex The sex of the student Binary (1/0)
Athlete Is a student athlete Binary (1/0)
EarlyDeferral Applied for early deferral Binary (1/0)
WaitlistYN Was waitlisted Binary (1/0)
Commute Is a commuter student Binary (1/0)
HSGPA High School GPA Integer
DistanceInMiles Distance from home (miles) Integer
School Member of a certain school, Categorical encoded

eg., CC (ComSci & Math) as binary (1,0)
IsPellRecipient Is recipient of Pell Grant Binary (1/0)
IsDeansList Joined Dean’s List Binary (1/0)
IsProbation Is on probabtion Binary (1/0)
OccupantsBuilding Number of occupants in dorm Integer
OccupantsRoom Number of occupants in dorm room Integer
IsSingleRoom Uses a single room Binary (1/0)
IsUnlimitedMealPlan Has unlimited meal plan Binary (1/0)
PercentHigherEd Percent of those with higher Float

education in home area
GiniIndex Gini Index value of home area Float
MedianIncome Median income of home area Float
PercentWithInternet Percent with internet in home area Float
Attrited (Target) Left the college Binary (1/0)

‘GiniIndex’. As mentioned previously, ‘DistanceInMiles’ is the amount of miles
between the college and the student’s hometown. ‘OccupantsBuilding’ is the
number of students that live in a student’s dorm building. Similarly, ‘Occu-
pantsRoom’ is the number of students that live within the student’s dorm room
including themselves. Last, ‘GiniIndex’ is the Gini coefficient of the student’s
hometown which is a measurement of income distribution in the area where a
high value indicates greater inequality. In order to handle these features, the
data is cleaned.

Our method of preprocessing the data includes removing any feature that is
comprised of more than 30% of nulls and imputing the remaining features with
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missing values using K nearest neighbors (KNN). Additionally, the preprocessing
step also included normalizing values between 0 and 1 for all integer and float
type features. All categorical features mentioned in Table 1 are dummified.

After preprocessing the data, it is used to perform three experiments as
described in the next few sections.

4.1 Experiment 1

In the first experiment, the GAN model was trained for 10,000 epochs. The
weights were then transferred to two models, one that is tuned for 500 epochs
to classify student attrition and the other that is left alone. This transference of
weights is an example of transfer learning where the knowledge gained through
adversarial training is applied to predicting student attrition (further details can
be found in the referenced work) [6]. A control model was made from the same
architecture as the GAN one, but trained separately on only the data previously
used to tune for classification for 500 epochs. From the Receiver Operating Char-
acteristic (ROC) diagrams, the control model performed marginally better with
an accuracy of 0.68 than the tuned GAN model with only 0.64 accuracy. A ROC
curve is a plot of the true positive rate against the false positive rate across
various thresholds that determine the dividing line between classifications for a
given model (more info in the provided reference) [2]. The accuracy of the GAN
model, before tuning, is extremely low at 0.42. It is important to also note the
discriminator and generator loss converging at about 10,000 epochs, or around
the amount of epochs this experiment ran.

Directing our attention to the Cohen’s kappa statistic, we observed that the
relationship between the control and tuned model shows a kappa value of 0.5301
when a threshold resulting in about a 5% error rate is used. This value could
be in the range of -1 to 1 and shows how close the model’s outputs are where
1 is identical and anything 0 or below is akin to equivalent by chance [7]. The
formula for the Cohen’s kappa coefficient is the following:

κ = (po − pe) / (1− pe) (3)

The po variable in the equation is the observed agreement of the labels applied
to a sample by the models while pe is the probability of chance agreement. The
aforementioned value 0.5301 demonstrates that the control and tuned models
for this experiment are outputting predictions that are similar but also having a
good number of discrepancies. The fact that they are different suggest that the
models are fundamentally different in their output distributions which is desired.
In the second experiment, we will see how the Cohen’s kappa coefficients change.

4.2 Experiment 2

In the second experiment, the GAN model trained for 15,000 epochs. We ob-
served that the discriminator and generator losses converged and begun separat-
ing again though on inverse sides. The GAN model, before tuning, still demon-
strates a low accuracy and a latent space with a similar linear relationship as
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in experiment 1. The control model’s accuracy remains at about .68 with 500
epochs of training. It is here that we see an improvement in the accuracy of
the tuned model boasting a .69 which is .05 higher than its previous. Last, the
kappa value for the control and tuned model is 0.4426 which is lower than in
the first experiment when ran with a threshold resulting in about a 5% false
positive rate despite the overall accuracy of the two models being different by a
0.01 margin. This means that despite their close accuracies, the two models are
providing differing outputs which suggests the two models are correctly classi-
fying students the other is misidentifying. The third and final experiment will
demonstrate what happens to the Cohen’s kappa coefficient when the accuracy
of the tuned model is higher than the control model.

4.3 Experiment 3

In the third experiment, the GAN model trained for 20,000 epochs. We chose
20,000 as the largest amount of epochs for an experiment due to the losses
converging at about 10,000 epochs and to see how well the model performed
with a large number of epochs at about double the point of loss convergence.
The loss and kappa statistic results are shown in Figure 3. As shown in (a),
the discriminator and generator losses converged, separated, and continued to
grow apart though on inverse sides to where they began. When we take a look
at the kappa score in (b), where the control and tuned models are predicting
at a threshold resulting in about a 5% false positive rate, it is higher than the
previous two experiments. Here, we see that their output similarity is measured
to be a 0.6358 kappa score. This increase in the kappa score is expected since
both models have an increased accuracy from the previous two experiments
which naturally leads to their outputs being similar as they both are making
more correct predictions. While this value is higher than in experiment 1 and 2,
it still demonstrates the predictions of the two models show a noteworthy degree
of discrepancy and produce different output distributions.

Figure 4 shows the GAN model before tuning. In (a) observe a low accuracy
though now with a noticeably different latent space, (b), that seems to still have
some semblance of a linear relationship with a high amount of data clumping at
the bottom left corner and some at the top right corner. This can be explained by
the nature of hyperbolic tangent activation function which aims to pull separate
classes into opposite sides of the quadrants.

Figure 5 shows the control model, which was able to reach an accuracy of
.69 with 500 epochs of training (a). However, it is still .01 below the tuned
model in this experiment as it reached a .70 accuracy. In (b) we observe that the
data points are more spread-out in the latent space while still pushing to have
separate classes in opposite sides of the quadrants.

Finally, Figure 6 depicts tuned model ROC (a) and its corresponding latent
space (b). In comparison to the control model in Figure 5 (b) we see groupings of
attrited students in the upper right corner suggesting there may be a correlation
in the predictors for these cases. The AUC and ROC are similar in both the
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(a) Discriminator & Generator Loss

Not Tuned Control Tuned

Control -0.0462
Tuned -0.0631 0.6358
True Vals -0.0239 0.2899 0.3545

(b) Cohen’s Kappa Statistics

Fig. 3: Experiment 3 Results: Loss and Kappa Statistic

control and tuned models; however, it is evident that the tuned model gives an
advantage over the traditional approach.

In the next paragraphs we will discuss the results of the three experiments
in more detail.

4.4 Results

The above three experiments demonstrate the effectiveness of adversarial train-
ing despite limited data and detecting a target between two very unbalanced
classes. As the number of epochs of adversarial training increased, the accuracy
of the tuned model is able to predict student attrition with a higher accuracy
and a lower false positive rate. This can prominently be seen in experiment 3;
using a threshold of about .31 and .44 for the control model and the tuned model,
respectively.

With this model we are able to make more accurate predictions while remain-
ing at about a 5% false positive rate as can be seen in the confusion matrices
in Figure 7. Furthermore, the Cohen’s kappa values that relate the control and
tuned models show that their outputs differ in each experiment to some degree
suggesting the two models are predicting differently for a number of students.
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(a) Not Tuned GAN Model ROC

(b) Not Tuned GAN Model Latent Space

Fig. 4: Experiment 3 Results: Not Tuned GAN Model ROC and Latent Space
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(a) Control Model ROC

(b) Control Model Latent Space

Fig. 5: Experiment 3 Results: Control GAN Model ROC and Latent Space
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(a) Tuned Model ROC

(b) Tuned Model Latent Space

Fig. 6: Experiment 3 Training Results: Tuned GAN Model ROC and Latent
Space
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(a) Control Model C.M. (b) Tuned Model C.M.

Fig. 7: Confusion Matrices for Experiment 3

Increasing the amount of epochs for the GAN training may produce higher
accuracy for the tuned model, but examining the loss diagram shows the dis-
criminator and generator losses converging and later diverging at about 10,000
epochs which may reveal a problem in the GAN training on which we comment
next.

5 Conclusions

As can be seen in the experiments, the classifier model of the GAN with tuning
increases its accuracy the more epochs it trains and eventually is more accurate
than the traditionally trained model. While the overall accuracy of either model
is low, any increase in the ability to detect anomalous students who leave during
freshmen year in such a small sample decreases the amount of false positives,
which is important if the model is to be used in any official capacity. Thus,
utilizing a GAN for better accuracy and a smaller false positive rate is a step
in the right direction. If we are to compare the latent space of the GAN trained
model that is tuned and the traditionally trained model, the layout of the data in
the latent space in one model seems to form a semblance of a reflection along the
diagonal of the layout in the other. The difference between the aforementioned
latent spaces suggests the tuned model uses what it has learned about the input
data in its prediction which may be the reason behind its higher accuracy in
experiment 2 and experiment 3. This is further exemplified by the kappa values
in each experiment comparing the control model to the tuned model displaying
the two are making predictions that differ to a notable degree. It should also
be noted that the loss diagrams show the discriminator and generator losses
converging at about 10,000 epochs where the discriminator loss then continues
to decrease and the generator’s loss increases until both reach a point of stability
with no major changes in their loss. This is most likely due to the generator
suffering from mode collapse. The generator outputs data with most of its values
hovering around .5 for the columns containing binary values which is likely the
reason behind the immediate divergence in the loss diagrams after 10,000 epochs.
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Looking to the future, the adversarial training may produce better results using
some degree of reinforcement training in order to introduce a penalty in the
generator for values that are not 1 or 0 in binary columns rather than solely
relying on unsupervised training to avoid mode collapse. Furthermore, a paper
by Akash Srivastava and others shows promise in reducing mode collapse using
implicit variational learning which is explained in detail in the referenced paper
[9]. Nonetheless, using GANs in situations of limited data and anomaly detection
shows promising results that should be explored further.
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