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Abstract. Image classification has emerged as one of the most impor-
tant areas of machine learning approaches. Face recognition, object de-
tection, driverless vehicles or robotics, and disease recognition are all
areas where it is already making an impact. The introduction of convo-
lutional neural network (CNN) layers to image classification and object
detection has also resulted in substantial improvements. Using lower di-
mensional sliding kernels, CNN is capable of extracting characteristics
from images without difficulties. When quantum circuits, which is the
fundamental element of quantum computing, are added to this kernel,
it becomes highly complex, classically intractable kernel. This hybrid
combination of a quantum circuit and a CNN can be used to detect
pneumonia early, which is an important step for curing the disease be-
fore it damages the infected person’s lungs. In this paper, we propose
a hybrid-CNN model with CNN based model architecture implemented
with quantum circuit on chest x-ray images to diagnose pneumonia dis-
ease. We used data from a public repository with more than 5K images,
applied classical and quantum algorithms within classification context.
Our results show significant performance with better accuracy values af-
ter using quantum circuit with classical CNN. The model’s performance
in detecting pneumonia demonstrates that the proposed quantum con-
volutional neural network-based model can efficiently categorize regular
and irregular X-ray images in practice.
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1 Introduction

Convolutional neural network layers have aided significant advancements in im-
age classification and object detection [13,23]. In image analysis, convolutional
filters are applied to multiple layers of images. Within each layer, the abstracted
representation of images is created by systematically convolving numerous filters
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across the image, resulting in a feature map that is utilized as input to the next
layer. This design allows images in the form of pixels to be processed as input
and the required categorization to be output. With increasing number of layers,
the number of parameters in a neural network rapidly rises. This can make a
model’s training computationally costly.

According to Havlek et al., using high-dimensional Hilbert space in quantum
computing allows us to create sophisticated kernel functions that can fit complex
nonlinear datasets [8]. The possibilities of CNNs are enhanced by these sophis-
ticated kernel functions. The use of a random quantum circuit as the kernel in
conjunction with a CNN results in improved accuracy and loss [10].

One of the essential tools for screening and diagnosing many lung disorders is
a chest X-ray examination, although it is not always simple to identify with the
naked eye. For example, one of the most popular ways medical professionals use
to diagnose pneumonia is a chest X-ray. Therefore, the construction of a precise
and reliable automatic detection model of pneumonia using a large number of
chest X-ray pictures has significant medical value. Also, pneumonia is one of the
world’s leading causes of death in children and the elderly which a bacterial or
viral infection can bring on. Radiographic evidence is a crucial component of
pneumonia diagnosis since chest X-rays are routinely taken as part of standard
therapy and can help differentiate between different types of pneumonia. Our
primary goal is to detect pneumonia using chest X-ray images. The combination
of quantum circuit with CNNs will allow us to detect this from chest X-ray
images. The purpose of this research is to increase the accuracy of CNN by
employing a quantum layer to diagnose pneumonia correctly.

2 Related Work

Several methods, including some machine learning algorithms, have been pro-
posed to analyze pneumonia identification utilizing chest X-ray images in recent
years. Wang et al. compared the performance of AlexNet [13], VGGNet [19],
GoogLeNet [21], and ResNet [9] in predicting the existence of various diseases.
In 2021, Zhang et al. created a CNN model based on VGG architecture to ex-
tract features from chest X-ray images and employ those features to determine
if a patient has pneumonia [24]. In the study of Wu et al., pneumonia prediction
was made by utilizing convolutional deep neural learning networks on chest x-
ray images [22]. The authors used publicly available chest x-ray image dataset,
which contains 5863 images of 1574 unique patients. For classifying chest X-rays
images of tuberculosis, Livieris et al. used an ensemble semi-supervised learning
algorithm that employs a voting approach to determine how to get the most out
of unlabeled inputs [14]. Guan et al. followed a unique category-wise residual
attention learning (CRAL) approach for multi-label chest X-ray image classi-
fication that learns discriminative features for multi-label classification, using
both category-specific and residual attention learning [7].

In 2019, Henderson et al. replaced convolution layer with quantum circuit and
implemented a hybrid combination of quantum circuit and CNN. The authors
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Fig. 1. Architecture of Quanvolutional Neural Network. The Quantum Circuit is dis-
played in Figure 2.

called this layer quanvolutional layer and named this approach as quanvolu-
tional neural network (QNN) [10]. The authors ran this model on three publicly
available datasets: MNIST, CIFAR, and SVHN [6,12,15] and obtained better
accuracy than classical CNN. In another study, Cong et al. proposed quantum
convolutional neural network that is entirely made of quantum circuits [5] to
analyze problems in quantum physics.

3 Methodology

This section presents a brief overview of classical CNN, quantum circuits, and
the combination of these two into quantum CNN. This section also discusses the
data and the model architecture for this paper.

3.1 Convolutional Neural Network (CNN)

Convolutional neural networks (CNNs) are an essential tool for analyzing visual
images. Over the last decade, CNNs have achieved cutting-edge results in the
domain of image and video recognition, pattern recognition, image analysis, and
natural language processing.

CNN reduces the number of parameters of the Artificial Neural Network
with multiple layers, which aids in the creation of larger models in order to
solve more complex problems. The architecture of a CNN is inspired by the
organization of the cortex in the human brain and is akin to the connectivity
pattern of neurons. The ability of neural networks to extract features from data
in a hierarchical manner accounts for a large part of the advantage that they
provide. These features are extracted using various layers, the most notable of
which is the convolutional layer, which gives the network its name.

3.2 Quantum circuit implementation

A quantum circuit is a paradigm for quantum computation, where a computa-
tion is mainly a sequence of quantum gates. The creation of a quantum gates
requires the most basic quantum system of all, which is a single qubit. Quantum
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Fig. 2. Quantum circuit operates on input data, applies a rotation, transforms with a
randomized quantum circuit, measures (decodes); finally we obtain the output.

circuits have the advantage of being reversible between initializing the qubits
and measuring them. As well as matrices, quantum gates, which are reversible,
can be described as rotations around bloch sphere. To perform rotations by θ
parameter around the x, y and z-axis of the Bloch sphere, X,Y and Z Pauli
gates are used. Those rotation are given by Rn̂(θ) = exp(−iθn̂ · σ⃗/2). Where n̂
is a real unit vector in three dimensions, and σ⃗ is a generalized vector of Pauli
matrices [16]. In addition to previous words, Penrose et al. proposed the tensor
diagram notation [18] and it has explored in the quantum computing context as
diagrammatic notation [4,3]. Figure 2 shows the quantum layer implemented in
Figure 1.

For the implementation, we used PennyLane [2]. Figure 2 shows the imple-
mentation of quantum convolution neural network. This concept is discussed in
the section 3.3.

3.3 Quanvolutional Neural Networks (QNN)

With the growing amount of data, classical machine learning algorithms have
started to face the challenge of computational complexity in tools. Quantum
machine learning (QML) provides faster solutions than classical methods for a
limited set of issues. This area is a combination of Quantum computing with
machine learning techniques, and it has shown overwhelming success in the last
decade. The implementation of Quantum neural networks have outperformed
classical machine learning algorithms on pattern recognition, image reconstruc-
tion, image and video analysis.

Although the hardware and software constraints remain significant, quan-
tum technology has viable components for implementing in machine learning
programs. The Quantum convolution layer is an extension of CNN to the con-
text of quantum circuits. By utilizing certain potentially mighty elements of
quantum processing, QNNs enhance the potential of CNNs. In theory, quantum
circuits can yield enormously complex kernels whose computing is classically
unachievable in principle. Quantum convolution layers transform the input data
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using a few quantum variational circuits with small error correction. Unlike clas-
sical CNNs, quanvolutional layers are built up of N quantum filters that produce
features maps by locally modifying input data (Figure 2). The main difference
with the classical convolutional layer is that quanvolutional filters extract char-
acteristics from input data by employing random quantum circuits to modify
spatially-local subsections of data. Compared to classical CNNs, quantum CNNs
have shown higher accuracy and faster training time.

A quantum layer can be implemented in a variety of ways, and in addition, a
quantum algorithm has several potential applications in different areas. CNNs,
for example, can be used with a quantum fully connected layer or in hybrid
models. To mention one example, the authors of [1] investigate how to imple-
ment a classical neural network with quantum algorithms to create a hybrid
quantum-classical neural network. Conversely, CNNs can be used with both a
quantum convolution layer and classical fully-connected layers [10]. J. Orduz
et al. describes the Quanvolutional autoencoder, which focuses on employing
randomized quantum circuits as quantum convolutions to learn new image rep-
resentations in a convolutional network[17]. Furthermore, instead of employing
any traditional CNN layer, Cong et al. replaced every CNN layer with quantum
circuits [5]. Using QNN (quanvolutional neural network) instead of CNNs has
also shown higher performance. Korn et al. compared QNNs to CNNs in terms
of accuracy, loss values, and adversarial robustness and showed their robustness
in the presence of adversarial examples produced by their classic versions [20].

3.4 Data

The data used in this project was collected from Kaggle [11]. The original dataset
contains a total of 5, 863 X-Ray images with two categories of pneumonia and
normal. These two labels don’t contain the same amount of images. Pneumonia
has 75% of data, whereas normal label has 25%. We reduced the dataset to 2000
images for training and 100 images for testing while selecting the same number
of images for both pneumonia and normal label. Due to limited resources, we
lowered the dimension of data to 28× 28. Figure 3 demonstrates a data sample.

3.5 Model Architecture

The work in this paper is largely built off of the work completed in Quanvo-
lutional Neural Networks: Powering Image Recognition with Quantum Circuits
[10], where CNN is implemented with quantum convolution layer. The approach
taken in our study differs from the author’s in that we did not post-process the
expectation values and instead used the raw expectation values. Our proposed
method’s model architecture is demonstrated in Figures 1 and 2.

In order to generate each quantum filter, we needed to know how many qubits
are necessary for the circuit, as well as the input size. A basic implementation
of 4 × 4 quanvolutional filters was chosen so that each simulated circuit had
exactly 16 qubits. At first, a small region of the input image is embedded into
a quantum circuit by applying parametrized rotations (Ry(θi)) to the qubits
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Fig. 3. Sample images from dataset. The image of a normal chest X-ray shows clear
lungs with no regions of aberrant opacities, whereas pneumonia images exhibits more
gray and vague areas.

started in the ground state. Then, a random unitary operator is performed on
the system (U). A quantum measurement obtains classical expectation values
from the quantum circuit (decoder). Each expectation value is translated to a
separate channel of a single output pixel, similar to a traditional convolution
layer. By repeating the method over different parts, the whole input picture can
be scanned, resulting in an output object that is organized as a multi-channel
image. A classical layer then follows the quantum layer. This classical layer
includes a dense layer which uses softmax activation function. We used adam

optimizer, sparse_categorical_crossentropy as loss function, and accuracy

metrics function while compiling the model.

4 Results and Analysis

Figure 4 displays the sample output of quanvolutional layers in gray scale. The
resolution downsampling and some local distortion induced by the quantum
kernel are plainly visible. On the other hand, as one would anticipate from a
convolution layer, the image’s overall shape remains kept. After training the
model and plotting the result of training vs validation accuracy and loss on
graph (Figure 6), the result suggests that the accuracy was getting closer to 1.0,
to be specific 0.96, while the loss was 0.1574. Although there is a zig-zag pattern
in the validation loss and accuracy, this might be a consequence of reducing the
pictures to a lesser quality. From Figure 7, we can see that adding quanvolutional
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layers achieves a validation loss of 0.43 in the 40th epochs, whereas classical CNN
reaches the same loss in the 100th epoch. This shows that QNN gets to better
accuracy than CNN in the same number of epochs. We also tried to change
the model architecture by adding some more layers to it. We added a batch
normalization layer, dropout layer and keras layer, but the result didn’t show
any improvement.

Fig. 4. Sample output from quanvolutional circuit layer.

A comparison is done with a classical CNN where only the convolution layer
is different from QNN. The result of this comparison is shown on Figure 6.
According to the findings, QNN outperforms CNN in terms of accuracy and
loss. The result of 96% training accuracy and 84% validation accuracy shows
that our proposed model performs well in comparison to CNN architecture.
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Fig. 5. Left: Comparison between CNN and QNN in terms of validation accuracy.
Right: Comparison between CNN and QNN in terms of validation loss.

Fig. 6. Left: Comparison between CNN and QNN in terms of training accuracy. Right:
Comparison between CNN and QNN in terms of training loss.

We have introduced a second model to see if our result persists in the new
model. We have introduced a batch normalization layer, a dropout layer and
a dense layer. The model was trained for 10 epochs. The average validation
accuracy and loss for the first model is showed in Figure 8 and Figure 7. And
average validation accuracy and loss for the second model is showed in Figure 10
and Figure 9. The implementation of our two models and our experiments are
available on an open repository.1

From the figures, we can observe that the quantum model converges faster
then the classic model before overfitting, although the classic model converges
to a smaller loss after many more iterations. Another important fact is that the
model exhibits a smaller variance in earlier stages of training in comparison to
the classic approach; this suggests that the quantum-based approach is much
more stable.

5 Conclusion and Future work

This paper proposes a quanvolutional neural network model that classifies pneu-
monia based on chest x-ray images. We designed a simple QNN based archi-

1 https://anonymous.4open.science/r/Quantum-Circuits-and-CNN-for-Pneumonia-Detection-CBF5/

quanvolution_pneumonia_1st_model.ipynb

https://anonymous.4open.science/r/Quantum-Circuits-and-CNN-for-Pneumonia-Detection-CBF5/quanvolution_pneumonia_1st_model.ipynb
https://anonymous.4open.science/r/Quantum-Circuits-and-CNN-for-Pneumonia-Detection-CBF5/quanvolution_pneumonia_1st_model.ipynb
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Fig. 7. Average validation loss for 10 runs in the first model

Fig. 8. Average validation accuracy for 10 runs in the first model
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Fig. 9. Average validation loss for 10 runs in the second model

Fig. 10. Average validation accuracy for 10 runs in the second model
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tecture where quantum circuit generates highly complex kernels. We performed
classification on the chest x-ray image dataset by encoding them in a quantum
state. We investigate the performance of our model by comparing with classical
CNN layer. Since the experiment suggests that combining a quanvolutional layer
with a classical CNN can produce better results, we will continue to improve the
validation result by adding more CNN layers. The images were also downsam-
pled to a lower resolution (28 × 28) due to a lack of computational resources,
which might compromise the accuracy. Finding suitable downsampling that does
not damage the x-ray image properties might be a worthwhile investigation. In
addition, we conducted the entire experiment using a quantum simulator. The
training would be faster if an actual quantum computer were used. Our future
work will focus on expanding our experiments and applying the suggested ap-
proach to a variety of biomedical datasets for image classification. In the future,
a more precise classification framework can be made for diagnosing two forms of
pneumonia, virus and bacteria.
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